|
- 2015
二次钠-空气电池的研究进展
|
Abstract:
摘要 二次钠-空气电池具有高达1600 Wh.kg-1的理论能量密度、2.3 V的理论放电电压平台和丰富的钠资源等优点,成为近年来的研究热点. 人们对钠-空气电池的研究时间较短,还有大量的问题需要解决. 本文根据近几年对于二次钠-空气电池的初步研究,并结合作者课题组在钠电池研究领域的探索和体会,总结了目前钠-空气电池核心问题的主要研究进展,并对钠-空气电池应用前景进行了展望.
Rechargeable sodium-air batteries have been the focus in the fields of batteries and energy storage recently, owing to their high specific energy density (1600 Wh?kg-1), an equilibrium discharge potential of 2.3 V and earth-abundant sodium element. However, research on sodium-air cells is still in an infant age and presents many scientific issues. Based on recently reported work and our own experience on sodium-based batteries, this review summarizes the research progress related to the critical scientific issues of secondary sodium-air batteries and the application prospect of sodium-air battery
[1] | Cui Y, Wen Z, Liang X, et al. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li-O2 batteries[J]. Energy & Environmental Science, 2012, 5(7): 7893-7897. |
[2] | Zhang S, Wen Z, Rui K, et al. Graphene nanosheets loaded with Pt nanoparticles with enhanced electrochemical performance for sodium-oxygen batteries[J]. Journal of Materials Chemistry A, 2015, 3(6): 2568-2571. |
[3] | Kim J, Lim H D, Gwon H, et al. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes[J]. Physical Chemistry Chemical Physics, 2013, 15(10): 3623-3629. |
[4] | Fu Z, Yin W W, Shadike Z, et al. A long-life Na-air battery based on soluble NaI catalyst[J]. Chemical Communications, 2014, 51(12): 2324-2327. |
[5] | Hu Y Y(胡英瑛), Wen Z Y(温兆银), Rui K(芮琨), et al. State-of-the-art research and development status of sodium batteries[J]. Energy Storage Science and Technology(储能科学与技术), 2013, 2(2): 81-90. |
[6] | Kim H, Jeong G, Kim Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews, 2013, 42(23): 9011-9034. |
[7] | Li Y G, Dai H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15): 5257-5275. |
[8] | Kuo D T, Kirk D W, Jia C Q. The chemistry of aqueous S(IV)-Fe-O2 system: State of the art[J]. Journal of Sulfur Chemistry, 2006, 27(5): 461-530. |
[9] | McCloskey B D, Garcia J M, Luntz A C. Chemical and electrochemical differences in nonaqueous Li-O2 and Na-O2 batteries[J]. The Journal of Physical Chemistry Letters, 2014, 5(7): 1230-1235. |
[10] | Liu W, Sun Q, Yang Y, et al. An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts[J]. Chemical Communications, 2013, 49(19): 1951-1953. |
[11] | Ren X, Wu Y. A low-overpotential potassium-oxygen battery based on potassium superoxide[J]. Journal of the American Chemical Society, 2013, 135(8): 2923-2926. |
[12] | Das S K, Lau S, Archer L. Sodium-oxygen battery: A new class of metal-air battery[J]. Journal of Materials Chemistry A, 2014, 2(32): 12623-12629. |
[13] | Zu C X, Li H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8): 2614-2624. |
[14] | Peled E, Golodnitsky D, Mazor H, et al. Parameter analysis of a practical lithium- and sodium-air electric vehicle battery[J]. Journal of Power Sources, 2011, 196(16): 6835-6840. |
[15] | Hartmann P, Bender C L, Vracar M, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nature Materials, 2013, 12(3): 228-232. |
[16] | Kang S, Mo Y, Ong S P, et al. Nanoscale stabilization of sodium oxides: Implications for Na-O2 batteries[J]. Nano Letters, 2014, 14(2): 1016-1020. |
[17] | Li Y, Yadegari H, Li X, et al. Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries[J]. Chemical Communications, 2013, 49(100): 11731-11733. |
[18] | Wen Z, Hu Y, Wu X, et al. Main challenges for high performance NAS battery: Materials and interfaces[J]. Advanced Functional Materials, 2013, 23(8): 1005-1018. |
[19] | Milusheva Y, Boukoureshtlieva R, Hristov S, et al. Environmentally-clean Mg-air electrochemical power sources[J]. Bulgarian Chemical Communications, 2011, 43(1): 42-47. |
[20] | Palomares V, Casas-Cabanas M, Castillo-Martinez E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312-2337. |
[21] | Sun Q, Yang Y, Fu Z W. Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte[J]. Electrochemistry Communications, 2012, 16(1): 22-25. |
[22] | Yin W W, Yue J L, Cao M H, et al. Dual catalytic behavior of a soluble ferrocene as an electrocatalyst and in the electrochemistry for Na-air batteries[J]. Journal of Materials Chemistry A, 2015, 3(37): 19027-19032. |
[23] | Jia X P(贾旭平). The sodium-ion battery in aquion energy[J]. Chinese Journal of Power Sources(电源技术), 2012, 36(7): 925-927. |
[24] | Yang H X, Qian J F. Recent development of aqueous sodium ion batteries and their key materials[J]. Journal of Inorganic Materials, 2013, 28(11): 1165-1171. |
[25] | Zhao N, Li C, Guo X X. Long-life Na-O2 batteries with high energy efficiency enabled by electrochemically splitting NaO2 at low overpotential[J]. Physical Chemistry Chemical Physics, 2014, 16(29): 15646-15652. |
[26] | Luntz A C, McCloskey B D. Nonaqueous Li-air batteries: A status report[J]. Chemical reviews, 2014, 114(23): 11721-11750. |
[27] | Cui Y, Wen Z, Liu Y. A free-standing-type design for cathodes of rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(11): 4727-4734. |
[28] | Ren Z W(任志伟), Zhou D B(周德璧), Tu S Q(屠赛琦). Synthesis of cathode materials for Al-air cell and its electric performance[J]. Chinese Journal of Power Sources(电源技术), 2007, 31(9): 706-708. |
[29] | Bender C L, Hartmann P, Vra?ar M, et al. On the thermodynamics, the role of the carbon cathode, and the cycle life of the sodium superoxide (NaO2) battery[J]. Advanced Energy Materials, 2014, 4(12): No. 1301863. |
[30] | Bender C L, Bartuli W, Schwab M G, et al. Toward better sodium-oxygen batteries: A study on the performance of engineered oxygen electrodes based on carbon nanotubes[J]. Energy Technology, 2015, 3(3): 242-248. |
[31] | Hartmann P, Gruebl D, Sommer H, et al. Pressure dynamics in metal-oxygen(metal-air) batteries: A case study on sodium superoxide cells[J]. Journal of Physical Chemistry C, 2014, 118(3): 1461-1471. |
[32] | Lee B, Seo D H, Lim H D, et al. First-principles study of the reaction mechanism in sodium oxygen batteries[J]. Chemistry of Materials, 2014, 26(2): 1048-1055. |
[33] | Hartmann P, Bender C L, Sann J, et al. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery[J]. Physical Chemistry Chemical Physics, 2013, 15(28): 11661-11672. |
[34] | Sun Q, Yadegari H, Banis M N, et al. Self-stacked nitrogen-doped carbon nanotubes as long-life air electrode for sodium-air batteries: Elucidating the evolution of discharge product morphology[J]. Nano Energy, 2015, 12: 698-708. |
[35] | Kwak W J, Chen Z, Yoon C S, et al. Nanoconfinement of low-conductivity products in rechargeable sodium-air batteries[J]. Nano Energy, 2014, 12: 123-130. |
[36] | Hu Y X, Han X P, Zhao Q, et al. Porous perovskite calcium-manganese oxide microspheres as an efficient catalyst for rechargeable sodium-oxygen batteries[J]. Journal of Materials Chemistry A, 2015, 3: 3320-3324. |
[37] | McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries[J]. Journal of the American Chemical Society, 2011, 133(45): 18038-18041. |
[38] | Thotiyl M M O, Freunberger S A, Peng Z, et al. A stable cathode for the aprotic Li-O2 battery[J]. Nature materials, 2013, 12: 1050-1056. |
[39] | Freunberger S A, Chen Y H, Peng Z Q, et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes[J]. Journal of the American Chemical Society, 2011, 133(20): 8040-8047. |