|
- 2015
尖晶石型LiMn1.9Al0.1O3.95F0.05材料的制备及其增强的倍率性能
|
Abstract:
摘要 通过溶胶-凝胶和高温固相掺杂反应可控合成了形貌均匀、结晶性好的尖晶石型LiMn1.9Al0.1O3.95F0.05正极材料,探究了Al部分取代Mn、F部分取代O后对结构的影响,测试并比较了电极材料的倍率性能和循环充放电性能. 结果表明,尖晶石型LiMn1.9Al0.1O3.95F0.05和LiMn2O4有同样的晶型,但电极较传统的LiMn2O4电极倍率稳定性有显著提高. 在连续混合(如0.1C、0.5C和1C)充放电150次后,LiMn1.9Al0.1O3.95F0.05电极的容量仍能保持90%以上
[1] | Yi T F, Fang Z K, Xie Y, et al. Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast charge-discharge performance for lithium-ion battery[J]. Electrochimica Acta, 2014, 147(20): 250-256. |
[2] | Kiani M A, Mousavi M F, Rahmanifar M S. Synthesis of nano- and micro-particles of LiMn2O4: Electrochemical investigation and assessment as a cathode in Li battery[J]. International Journal of Electrochemical Science, 2011, 6(7): 2581-2595. |
[3] | Zheng H, Zhang Q, Li L, et al. Synthesis and electrochemical properties of spinel LiMn1.95MxO4-yFy for lithium ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(7): 5124-5129. |
[4] | Morales J, Sanchez L, Tirado J. New doped Li-M-Mn-O (M = A1, Fe, Ni) spinels as cathodes for rechargeable 3V lithium batteries[J]. Journal of Solid State Electrochemistry, 1998, 2(6): 420-426. |
[5] | Xu C Q(徐茶清), Tian Y W(田彦文), Zhai Y C(翟玉春), et al. The preparation of spinel LiMn2O4 using sol-gel method[J]. Journal of Northeastern University of Natural Science (东北大学学报), 2004, 25(10): 998-1001. |
[6] | Xu C Q(徐茶清), Tian Y W(田彦文), Liu L Y(刘丽英), et al. The effect of Al3+ doping on the structure and electrochemical performance of Li1.02Mn2O4[J]. Chinese Journal of Materials Research(材料研究学报), 2006, 20(5): 544-547. |
[7] | Xiong L L, Xu Y L, Tao T, et al. Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(47): 24563-24568. |
[8] | Guo G H(郭光辉), Chen S(陈 珊), Liu F F(刘芳芳), et al. Development of research on doping of spinel LiMn2O4[J]. New Chemical Materials(化工新型材料), 2013, 41(10): 169-171. |
[9] | Amatucci G G, Pereira N, Zheng T, et al. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution[J]. Journal of the Electrochemical Society, 2001, 148(2): 171-182. |
[10] | Kang Y J, Kim J H, Sun Y K. Structural and electrochemical study of Li-Al-Mn-O-F spinel material for lithium secondary batteries[J]. Journal of Power Sources, 2005, 146(1/2): 237-240. |
[11] | Yi T F, Zhu Y R, Zhu R S. Physicochemical properties of LiAlxMn2-xO4 and LiAl0.05Mn1.95O4-yFy cathode material by citric acid-assisted sol-gel method[J]. Ionics, 2009, 15(2): 177-182. |
[12] | Xia Y G, Zhang Q, Wang H Y, et al. Improved cycling performance of oxygen-stoichiometric spinel Li1+xAlyMn2-x-yO4+δ at elevated temperature[J]. Electrochimica Acta, 2007, 52(14): 4708-4714. |
[13] | Yi T F, Hu X G, Gao K. Synthesis and physicochemical properties of LiAl0.05Mn1.95O4 cathode material by the ultrasonic-assisted sol-gel method[J]. Journal of Power Sources, 2006, 162(1): 636-643. |
[14] | Yi T F, Hu X G, Wang D L, et al. Effects of Al, F dual substitutions on the structure and electrochemical properties of lithium manganese oxide[J]. Journal of University of Science and Technology Beijing, 2008, 15(2): 182-186. |
[15] | Zheng Z S(郑子山), Tang Z L(唐子龙), Zhang Z T(张中太), et al. Development of research on LiMn2O4 cathode material for lithium batteries[J]. Journal of Inorganic Materails(无机材料学报), 2003, 18(2): 257-263. |
[16] | Bao S J, Zhou W H, Liang Y Y, et al. Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution[J]. Materials Chemistry and Physics, 2006, 1(95): 188-192. |