|
- 2015
Pd-Sb/C复合纳米催化剂对甲酸电催化氧化的性能研究
|
Abstract:
摘要 以柠檬酸三钠为稳定剂,硼氢化钠为还原剂,制备了碳载型的Pd-Sb复合纳米催化剂(Pd-Sb/C),通过调制不同Pd:Sb摩尔比研究了其对甲酸电催化性能的影响. TEM结果表明,合成的纳米颗粒粒径较小且均匀分散在碳载体表面. XRD和XPS测试表明,Pd-Sb/C中少量的单质态Sb(0)高度分散在Pd颗粒中或表面,形成合金化程度较低的PdSb合金. 电化学测试表明,当Pd:Sb = 20:1时,合成的催化剂对甲酸的催化效能最佳. 与合成的Pd/C和商业Pd/C相比,Pd-Sb/C(20:1)的电流密度分别是Pd/C的2.6倍、商业Pd/C的4.2倍. Pd-Sb/C的整体催化性能得到改善主要归因于适量的单质态Sb(0)引入到Pd中,诱导产生电子效应和“双功能”效应,一方面减小Pd与CO毒性物种之间的吸附作用,另一方面促使Pd表面吸附的CO快速氧化,提高了Pd-Sb/C催化剂的抗CO中毒能力,使得Pd-Sb/C催化剂的整体催化性能得到改善
[1] | Wang J Y, Kang Y Y, Yang H, et al. Boron-doped palladium nanoparticles on carbon black as a superior catalyst for formic acid electro-oxidation[J]. The Journal of Physical Chemistry C, 2009, 113(19): 8366-8372. |
[2] | Lu L, Li H Z, Hong Y J, et al. Improvement of electrocatalytic performance of carbon supported Pd anodic catalyst in direct formic acid fuel cell by ethylenediamine-tetramethylene phosphonic acid[J]. Journal of Power Sources, 2012, 210: 154-157. |
[3] | Ren M J, Chen J, Li Y, et al. Lattice contracted Pd-hollow nanocrystals: Synthesis, structure and electrocatalysis for formic acid oxidation[J]. Journal of Power Sources, 2014, 246: 32-38. |
[4] | Wang J Y, Zhang H X, Jiang K, et al. From HCOOH to CO at Pd electrodes: A surface-enhanced infrared spectroscopy study[J]. Journal of the American Chemical Society, 2011, 133(38): 14876-14879. |
[5] | Miyake H, Okada T, Osawa G S M. Formic acid electrooxidation on Pd in acidic solutions studied by surface enhanced infrared absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2008, 10(25): 3662-3669. |
[6] | Yu X W, Pickup P G. Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation[J]. Electrochemistry Communications, 2009, 11(10): 2012-2014. |
[7] | Lee J K, Jeon H, Uhm S, et al. Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells[J]. Electrochimica Acta, 2008, 53(21): 6089-6092. |
[8] | Peng B, Wang J Y, Zhang H X, et al. A versatile electroless approach to controlled modification of Sb on Pt surfaces towards efficient electrocatalysis of formic acid[J]. Electrochemistry Communications, 2009, 11(4): 831-833. |
[9] | Haan J L, Stafford K M, Morgan R D, et al. Performance of the direct formic acid fuel cell with electrochemically modified palladium-antimony anode catalyst[J]. Electrochimica Acta, 2010, 55(7): 2477-2481. |
[10] | Yu X W, Pickup P G. Deactivation resistant PdSb/C catalysts for direct formic acid fuel cells[J]. Electrochemistry Communications, 2010, 12(6): 800-803. |
[11] | Yu X W, Pickup P G. Recent advances in Direct Formic Acid Fuel Cells (DFAFC)[J]. Journal of Power Sources, 2008, 182(1): 124-132. |
[12] | Waszczuk P, Barnard T M, Rice C, et al. A nanoparticle catalyst with superior activity for electrooxidation of formic acid[J]. Electrochemistry Communications, 2002, 4(7): 599-603. |
[13] | El-Nagar G A, Mohammad A M, El-Deab M S, et al. Electrocatalysis by design: Enhanced electrooxidation of formic acid at platinum nanoparticles-nickel oxide nanoparticles binary catalysts[J]. Electrochimica Acta, 2013, 94: 62-71. |
[14] | Zhu Y, Kang Y Y, Zou Z Q, et al. A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid[J]. Electrochemistry Communications, 2008, 10(5): 802-805. |
[15] | Shen S Y, Zhao T S, Xu J B, et al. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells[J]. Journal of Power Sources, 2010, 195(4): 1001-1006. |
[16] | Zhang J T, Qiu C C, Ma H Y, et al. Facile fabrication and unexpected electrocatalytic activity of palladium thin films with hierarchical architectures[J]. The Journal of Physical Chemistry C, 2008, 112(36): 13970-13975. |
[17] | Tammam R H, Saleh M M. Electrocatalytic oxidation of formic acid on nano/micro fibers of poly(p-anisdine) modified platinum electrode[J]. Journal of Power Sources, 2014, 246: 178-183. |
[18] | Bertin E, Garbarino S, Guay D, et al. Electrodeposited platinum thin films with preferential (100) orientation: Characterization and electrocatalytic properties for ammonia and formic acid oxidation[J]. Journal of Power Sources, 2013, 225: 323-329. |
[19] | Rice C, Ha S, Masel R I, et al. Catalysts for direct formic acid fuel cells[J]. Journal of Power Sources, 2003, 115(2): 229-235. |
[20] | Zhou W J, Lee J Y. Particle size effects in Pd-catalyzed electrooxidation of formic acid[J]. The Journal of Physical Chemistry C, 2008, 112(10): 3789-3793. |
[21] | Hu S, Scudiero L, Ha S. Electronic effect on oxidation of formic acid on supported Pd-Cu bimetallic surface[J]. Electrochimica Acta, 2012, 83: 354-358. |