全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

碱性体系中金电极表面硫氰根离子的宽带和频光谱研究
Broadband Sum-Frequency Generation Spectroscopic Invstigations of Thiocyanate on Polycrystalline Au Electrode in Alkaline Solutions

DOI: 10.13208/j.electrochem.150413

Keywords: 宽带和频光谱,金电极,硫氰根离子,碱性电解质,
broadband sum frequency generation
,Au electrode,thiocyanate ion,alkaline solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 本文使用宽带和频光谱研究不同电位下碱性溶液中多晶金电极表面硫氰根离子(SCN-)的吸附行为. 在-1.1 V ~ 0.2 V(vs. SCE),C—N伸缩振动的Stark斜率的变化表明,随着电位正移,SCN-在金电极表面从N端吸附变为S端吸附. 在较正电位下,C—N伸缩振动具有Fano线型. 这是因为金的费米能级随电位的正移而降低,和频过程中金的电子跃迁方式从带内跃迁(sp→sp)变为带间跃迁(d→sp),造成金基底与表面吸附SCN-和频信号的相对相位改变. 实验表明,通过研究和频光谱线型随电位的变化可以获取电极表面电子能级相对位置的信息

References

[1]  Bron M, Holze R. Cyanate and thiocyanate adsorption at copper and gold electrodes as probed by in situ infrared and surface-enhanced Raman spectroscopy[J]. Journal of Electroanalytical Chemistry, 1995, 385(1): 105-113.
[2]  Einaga Y, Sato R, Olivia H, et al. Modified diamond electrodes for electrolysis and electroanalysis applications[J]. Electrochimica Acta, 2004, 49(22/23): 3989-3995.
[3]  Harris A, Rothberg L, Dubois L, et al. Molecular vibrational energy relaxation at a metal surface: Methyl thiolate on Ag(111)[J]. Physical Review Letters, 1990, 64(17): 2086-2089.
[4]  Bonn M, Hess C, Funk S, et al. Femtosecond surface vibrational spectroscopy of CO adsorbed on Ru(001) during desorption[J]. Physical Review Letters, 2000, 84(20): 4653-4656.
[5]  Sato N. Electrochemistry at metal and semiconductor electrodes[M]. Elsevier Science, 1998.
[6]  Dreesen L, Humbert C, Celebi M, et al. Influence of the metal electronic properties on the sum-frequency generation spectra of dodecanethiol self-assembled monolayers on Pt(111), Ag(111) and Au(111) single crystals[J]. Applied Physics B, 2002, 74(7/8): 621-625.
[7]  Samant M G, Kunimatsu K, Viswanathan R, et al. In situ vibrational spectroscopy of contact adsorbed thiocyanate on silver electrodes: Experiment and theory[J]. Langmuir, 1991, 7(6): 1261-1268.
[8]  Gao P, Weaver M J. Metal-adsorbate vibrational frequencies as a probe of surface bonding: halides and pseudohalides at gold electrodes[J]. The Journal of Physical Chemistry, 1986, 90(17): 4057-4063.
[9]  Williams C T, Yang Y, Bain C D. Total internal reflection sum-frequency spectroscopy. A strategy for studying molecular adsorption on metal surfaces[J]. Langmuir 2000, 16(5): 2343-2350.
[10]  Gomes J F, Bergamaski K, Pinto M F S, et al. Reaction intermediates of ethanol electro-oxidation on platinum investigated by SFG spectroscopy[J]. Journal of Catalysis, 2013, 302: 67-82.
[11]  Baldelli S. Probing electric fields at the ionic liquid-electrode interface using sum frequency generation spectroscopy and electrochemistry[J]. Journal of Physical Chemistry B, 2005, 109(27): 13049-13051.
[12]  Ren B, Huang Q J, Xie Y, et al. Analyzing the adsorption behavior of thiocyanide on pure Pt and Ni electrode surfaces by confocal microprobe Raman spectroscopy[J]. Analytical sciences, 2000, 16(2): 225-230.
[13]  Corrigan D S, Weaver M J. Coverage-dependent orientation of adsorbates as probed by potential-difference infrared spectroscopy: Azide, cyanate, and thiocyanate at silver electrodes[J]. The Journal of Physical Chemistry, 1986, 90(21): 5300-5306.
[14]  Zhou W, Inoue S, Iwahashi T, et al. Double layer structure and adsorption/desorption hysteresis of neat ionic liquid on Pt electrode surface - an in-situ IR-visible sum-frequency generation spectroscopic study[J]. Electrochemistry Communications, 2010, 12(5): 672-675.
[15]  Mukherjee P, Lagutchev A, Dlott D D. In Situ probing of solid-electrolyte interfaces with nonlinear coherent vibrational spectroscopy[J]. Journal of The Electrochemical Society, 2012, 159(3): A244-A252.
[16]  Tadjeddine A, Le R A, Pluchery O, et al. Sum and difference frequency generation at the electrochemical interface[J]. Physica Status Solidi A-Applied Research, 1999, 175(1): 89-107.
[17]  Shen Y. Surface properties probed by second-harmonic and sum-frequency generation[J]. Nature, 1989, 337: 519-525.
[18]  Liu Y Q(刘要强), Chen G Q(陈桂琴), Wang Z H(王朝晖). Development of femtosecond sum frequency generation spectroscopy[J]. Journal of Xiamen University(Natural Science)(厦门大学学报(自然科学版)), 2013, 52(2): 149-153.
[19]  Corrigan D S, Foley J K, Gao P, et al. Comparisons between surface-enhanced Raman and surface infrared spectroscopies for strongly perturbed adsorbates: Thiocyanate at gold electrodes[J]. Langmuir, 1985, 1(5): 616-620.
[20]  Li X, Gewirth A A. Potential-dependent reorientation of thiocyanate on Au electrodes[J]. Journal of the American Chemical Society, 2003, 125(38): 11674-11683.
[21]  Zhang B, Li J F, Zhong Q L, et al. Electrochemical and surfaced-enhanced raman spectroscopic investigation of CO and SCN-adsorbed on Au(core)-Pt(shell) nanoparticles supported on GC electrodes[J]. Langmuir, 2005, 21(16): 7449-7455.
[22]  Hu J W, Li J F, Ren B, et al. Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced raman scattering substrate[J]. The Journal of Physical Chemistry C, 2006, 111(3): 1105-1112.
[23]  Rolison D R. Zeolite-modified electrodes and electrode-modified zeolites[J]. Chemical Reviews, 1990, 90(5): 867-878.
[24]  Ong T H, Davies P B, Bain C D. Adsorption of thiocyanate on polycrystalline silver and gold electrodes studied in situ by sum-frequency spectroscopy[J]. The Journal of Physical Chemistry, 1993, 97(46): 12047-12050.
[25]  Tadjeddine A, Peremans A, Le R A, et al. Investigation of the vibrational properties of CN- on a Pt electrode by in situ VIS-IR sum frequency generation and functional density calculations[J]. Journal of The Chemical Society-Faraday Transactions, 1996, 92(20): 3823-3828.
[26]  Superfine R, Guyot-Sionnest P, Hunt J, et al. Surface vibrational spectroscopy of molecular adsorbates on metals and semiconductors by infrared-visible sum-frequency generation[J]. Surface Science, 1988, 200(1): L445-L450.
[27]  Borkowska Z, Tymosiak-Zielinska A, Shul G. Electrooxidation of methanol on polycrystalline and single crystal gold electrodes[J]. Electrochimica Acta, 2004, 49(8): 1209-1220.
[28]  Bron M, Holze R. The adsorption of thiocyanate ions at gold electrodes from an alkaline electrolyte solution: A combined in situ infrared and Raman spectroscopic study[J]. Electrochimica Acta, 1999, 45(7): 1121-1126.
[29]  Parry D B, Harris J M, Ashley K. Multiple internal reflection Fourier transform infrared spectroscopic studies of thiocyanate adsorption on silver and gold[J]. Langmuir, 1990, 6(1): 209-217.
[30]  Fang P P, Li J F, Lin X D, et al. A SERS study of thiocyanate adsorption on Au-core Pd-shell nanoparticle film electrodes[J]. Journal of Electroanalytical Chemistry, 2012, 665: 70-75.
[31]  Bristow C A, Michalitsch R, Laibinis P E. Electrochemical sensing of thiocyanate using gold electrodes modified with an underpotentially deposited silver monolayer[J]. Electroanalysis, 2010, 22(2): 143-146.
[32]  Tadjeddine A, Guyot-Sionnest P. Spectroscopic investigation of adsorbed cyanide and thiocyanate on platinum using sum frequency generation[J]. Electrochimica acta, 1991, 36(11/12): 1839-1847.
[33]  Tian Z Q, Ren B, Mao B W. Extending surface Raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces[J]. Journal of Physical Chemistry B, 1997, 101(8): 1338-1346.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133