|
- 2015
基于有机和组合电解液的锂空气电池研究进展
|
Abstract:
摘要 发展纯电动汽车与混合动力汽车是解决能源危机与环境问题的有效途径,这对新能源材料及储能设备提出了更高的要求. 其中以金属锂作为负极、以空气中的氧气作为正极活性物质组成的锂-空气二次电池具有很高的理论比能量,因在纯电动汽车、混合动力汽车方面有很好的应用前景而受到人们的广泛关注. 根据工作环境及介质条件,目前研究最多的锂-空气电池主要包括有机电解液、有机-水组合电解液及全固态电解质三种类型. 由于锂-空气电池的发展历史较短,目前仍处于起步阶段,在电池的正极、负极、电解液(质)及综合性能等方面均存在诸多的困难与挑战. 本文从作者课题组对有机电解液及组合电解液型锂-空气电池方面的研究出发,旨在向读者简单介绍锂-空气电池的发展历史,研究现状及未来努力的方向
[1] | Peng Z Q, Freunberger S A, Hardwick L J, et al. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angewandte Chemie-International Edition, 2011, 50(28): 6351-6355. |
[2] | Zhang W, Duchesne P N, Gong Z L, et al. In situ electrochemical XAFS studies on an iron fluoride high-capacity cathode material for rechargeable lithium batteries[J]. Journal of Physical Chemistry C, 2013, 117(22): 11498-11505. |
[3] | Freunberger S A, Chen Y H, Peng Z Q, et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes[J]. Journal of the American Chemical Society, 2011, 133(20): 8040-8047. |
[4] | Wang Y R, He P, Zhou H S. Li-redox flow batteries based on hybrid electrolytes: At the cross road between Li-ion and redox flow batteries[J]. Advanced Energy Materials, 2012, 2(7): 770-779. |
[5] | Jiao F, Bruce P G. Mesoporous crystalline beta-MnO2- a reversible positive electrode for rechargeable lithium batteries[J]. Advanced Materials, 2007, 19(5): 657-660. |
[6] | Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809): 220-222. |
[7] | Lu Y C, Xu Z C, Gasteiger H A, et al. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society, 2010, 132(35): 12170-12171. |
[8] | Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. |
[9] | Lu Y C, Gasteiger H A, Parent M C, et al. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries[J]. Electrochemical and Solid State Letters, 2010, 13(6): A69-A72. |
[10] | Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
[11] | Abruna H D, Meyer T J. Introduction to ACS catalysis' special issue on electrocatalysis[J]. ACS Catalysis, 2012, 2(5): 899-900. |
[12] | Tong S F, Zheng M B, Lu Y, et al. A binder-free carbonized bacterial cellulose supported ruthenium nanoparticles for Li-O2 battery[J]. Chemical Communications, 2015, 51, 7302-7304. |
[13] | Shui J L, Karan N K, Balasubramanian M, et al. Fe/N/C composite in Li-O2 battery: Studies of catalytic structure and activity toward oxygen evolution reaction[J]. Journal of the American Chemical Society, 2012, 134(40): 16654-16661. |
[14] | Lacey M J, Frith J T, Owen J R. A redox shuttle to facilitate oxygen reduction in the lithium air battery[J]. Electrochemistry Communications, 2013, 26: 74-76. |
[15] | Zhang J L, Vukmirovic M B, Xu Y, et al. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates[J]. Angewandte Chemie-International Edition, 2005, 44(14): 2132-2135. |
[16] | Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
[17] | Jiang J(蒋颉), Liu X F(刘晓飞), Zhao S Y(赵世勇), et al. Research progress of organic electrolyte based lithium-air batteries[J]. Acta Chimica Sinica(化学学报), 2014, 72(4): 417-426. |
[18] | Lee J S, Kim S T, Cao R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1(1): 34-50. |
[19] | Freunberger S A, Chen Y H, Drewett N E, et al. The lithium-oxygen battery with ether-based electrolytes[J]. Angewandte Chemie-International Edition, 2011, 50(37): 8609-8613. |
[20] | Lu Y C, Kwabi D G, Yao K P C, et al. The discharge rate capability of rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8): 2999-3007. |
[21] | Cui Y M, Wen Z Y, Liang X, et al. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li-O2 batteries[J]. Energy & Environmental Science, 2012, 5(7): 7893-7897. |
[22] | Gallant B M, Mitchell R R, Kwabi D G, et al. Chemical and morphological changes of Li-O2 battery electrodes upon cycling[J]. Journal of Physical Chemistry C, 2012, 116(39): 20800-20805. |
[23] | Xu D, Wang Z L, Xu J J, et al. Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries[J]. Chemical Communications, 2012, 48(55): 6948-6950. |
[24] | Jung H G, Hassoun J, Park J B, et al. An improved high-performance lithium-air battery[J]. Nature Chemistry, 2012, 4(7): 579-585. |
[25] | Jung H G, Kim H S, Park J B, et al. A Transmission electron microscopy study of the electrochemical process of lithium-oxygen cells[J]. Nano Letters, 2012, 12(8): 4333-4335. |
[26] | Hassoun J, Jung H G, Lee D J, et al. A metal-free, lithium-ion oxygen battery: A step forward to safety in lithium-air batteries[J]. Nano Letters, 2012, 12(11): 5775-5779. |
[27] | Lu Y C, Gasteiger H A, Shao-Horn Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries[J]. Journal of the American Chemical Society, 2011, 133(47): 19048-19051. |
[28] | Sun B, Munroe P, Wang G X. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance[J]. Scientific Reports, 2013, 3: Article number: 2247. |
[29] | Debart A, Bao J, Armstrong G, et al. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst[J]. Journal of Power Sources, 2007, 174(2): 1177-1182. |
[30] | Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie-International Edition, 2013, 52(1): 392-396. |
[31] | Yu M Z, Ren X D, Ma L, et al. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium - oxygen battery for photoassisted charging[J]. Nature Communications, 2014, 5: Article number: 5111. |
[32] | Sun D, Shen Y, Zhang W, et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries[J]. Journal of the American Chemical Society, 2014, 136(25): 8941-8946. |
[33] | Lu Y H, Goodenough J B. Rechargeable alkali-ion cathode-flow battery[J]. Journal of Materials Chemistry, 2011, 21(27): 10113-10117. |
[34] | Jian Z L, Liu P, Li F J, et al. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries[J]. Angewandte Chemie-International Edition, 2014, 53(2): 442-446. |
[35] | Yoo E, Zhou H S. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts[J]. Acs Nano, 2011, 5(4): 3020-3026. |
[36] | McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries[J]. Journal of the American Chemical Society, 2011, 133(45): 18038-18041. |
[37] | Harding J R, Lu Y C, Tsukada Y, et al. Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications[J]. Physical Chemistry Chemical Physics, 2012, 14(30): 10540-10546. |
[38] | Laoire C O, Mukerjee S, Abraham K M, et al. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery[J]. Journal of Physical Chemistry C, 2010, 114(19): 9178-9186. |
[39] | Peng Z Q, Freunberger S A, Chen Y H, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094): 563-566. |
[40] | Jung H G, Jeong Y S, Park J B, et al. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries[J]. ACS Nano, 2013, 7(4): 3532-3539. |
[41] | Li F J, Zhang T, Yamada Y, et al. Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes[J]. Advanced Energy Materials, 2013, 3(4): 532-538. |
[42] | Lim H D, Park K Y, Gwon H, et al. The potential for long-term operation of a lithium-oxygen battery using a non-carbonate-based electrolyte[J]. Chemical Communications, 2012, 48(67): 8374-8376. |
[43] | Zhai D Y, Wang H H, Yang J B, et al. Disproportionation in Li-O2 batteries based on a large surface area carbon cathode[J]. Journal of the American Chemical Society, 2013, 135(41): 15364-15372. |
[44] | Guo Z Y, Dong X L, Yuan S Y, et al. Humidity effect on electrochemical performance of Li-O2 batteries[J]. Journal of Power Sources, 2014, 264: 1-7. |
[45] | Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. Journal of the Electrochemical Society, 1996, 143(1): 1-5. |
[46] | Ogasawara T, Debart A, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries[J]. Journal of the American Chemical Society, 2006, 128(4): 1390-1393. |
[47] | Lu Y H, Goodenough J B, Kim Y. Aqueous cathode for next-generation alkali-ion batteries[J]. Journal of the American Chemical Society, 2011, 133(15): 5756-5759. |
[48] | Yang X H, He P, Xia Y Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery[J]. Electrochemistry Communications, 2009, 11(6): 1127-1130. |
[49] | Zhang T, Imanishi N, Shimonishi Y, et al. A novel high energy density rechargeable lithium/air battery[J]. Chemical Communications, 2010, 46(10): 1661-1663. |
[50] | Read J. Characterization of the lithium/oxygen organic electrolyte battery[J]. Journal of the Electrochemical Society, 2002, 149(9): A1190-A1195. |
[51] | Littauer E L, Tsai K C. Corrosion of lithium in alkaline-solution[J]. Journal of the Electrochemical Society, 1977, 124(6): 850-855. |
[52] | Bruce P G, Hardwick L J, Abraham K M. Lithium-air and lithium-sulfur batteries[J]. MRS Bulletin, 2011, 36(7): 506-512. |
[53] | Wang Y R, Wang Y G, Zhou H S. A Li-liquid cathode battery based on a hybrid electrolyte[J]. ChemSusChem, 2011, 4(8): 1087-1090. |
[54] | Harry K J, Hallinan D T, Parkinson D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1): 69-73. |
[55] | Leskes M, Moore A J, Goward G R, et al. Monitoring the electrochemical processes in the lithium-air battery by solid state NMR spectroscopy[J]. Journal of Physical Chemistry C, 2013, 117(51): 26929-26939. |
[56] | Hutchings G S, Rosen J, Smiley D, et al. Environmental in situ X-ray absorption spectroscopy evaluation of electrode materials for rechargeable lithium-oxygen batteries[J]. Journal of Physical Chemistry C, 2014, 118(24): 12617-12624. |
[57] | Girishkumar G, McCloskey B, Luntz A C, et al. Lithium - air battery: Promise and challenges[J]. Journal of Physical Chemistry Letters, 2010, 1(14): 2193-2203. |
[58] | Park J B, Lee J, Yoon C S, et al. Ordered mesoporous carbon electrodes for Li-O2 batteries[J]. Acs Applied Materials & Interfaces, 2013, 5(24): 13426-13431. |
[59] | Wang Y G, Zhou H S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy[J]. Journal of Power Sources, 2010, 195(1): 358-361. |
[60] | He P, Wang Y G, Zhou H S. A Li-air fuel cell with recycle aqueous electrolyte for improved stability[J]. Electrochemistry Communications, 2010, 12(12): 1686-1689. |
[61] | He P, Wang Y G, Zhou H S. The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid electrolytes[J]. Journal of Power Sources, 2011, 196(13): 5611-5616. |
[62] | Li F J, Kitaura H, Zhou H S. The pursuit of rechargeable solid-state Li-air batteries[J]. Energy & Environmental Science, 2013, 6(8): 2302-2311. |
[63] | Kitaura H, Zhou H S. Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode[J]. Advanced Energy Materials, 2012, 2(7): 889-894. |
[64] | Li F J, Ohnishi R, Yamada Y, et al. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chemical Communications, 2013, 49(12): 1175-1177. |
[65] | Zhang T, Zhou H S. A reversible long-life lithium-air battery in ambient air[J]. Nature Communications, 2013, 4: Article number: 1817. |
[66] | Oh S H, Black R, Pomerantseva E, et al. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries[J]. Nature Chemistry, 2012, 4(12): 1004-1010. |
[67] | Xu J J, Xu D, Wang Z L, et al. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium oxygen batteries[J]. Angewandte Chemie-International Edition, 2013, 52(14): 3887-3890. |
[68] | Li F J, Tang D M, Chen Y, et al. Ru/ITO: A carbon-free cathode for nonaqueous Li-O2 battery[J]. Nano Letters, 2013, 13(10): 4702-4707. |
[69] | Li F J, Tang D M, Jian Z L, et al. Li-O2 battery based on highly efficient Sb-doped Tin oxide supported Ru nanoparticles[J]. Advanced Materials, 2014, 26(27): 4659-4664. |
[70] | Laoire C O, Mukerjee S, Plichta E J, et al. Rechargeable lithium/TEGDME-LiPF6/O2 battery[J]. Journal of the Electrochemical Society, 2011, 158(3): A302-A308. |
[71] | Gunasekara I, Mukerjee S, Plichta E J, et al. Microelectrode diagnostics of lithium-air batteries[J]. Journal of the Electrochemical Society, 2014, 161(3): A381-A392. |
[72] | Herranz J, Garsuch A, Gasteiger H A. Using rotating ring disc electrode voltammetry to quantify the speroxide radical stability of aprotic Li-air battery Electrolytes[J]. Journal of Physical Chemistry C, 2012, 116(36): 19084-19094. |
[73] | McCloskey B D, Scheffler R, Speidel A, et al. On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials: Some implications for Li-air batteries[J]. Journal of Physical Chemistry C, 2012, 116(45): 23897-23905. |
[74] | Chen Y H, Freunberger S A, Peng Z Q, et al. Charging a Li-O2 battery using a redox mediator[J]. Nature Chemistry, 2013, 5(6): 489-494. |
[75] | Thotiyl M M O, Freunberger S A, Peng Z Q, et al. A stable cathode for the aprotic Li-O2 battery[J]. Nature Materials, 2013, 12(11): 1049-1055. |
[76] | Zhou H S, Wang Y G, Li H Q, et al. The development of a new type of rechargeable batteries based on hybrid electrolytes[J]. ChemSusChem, 2010, 3(9): 1009-1019. |
[77] | Wang Y G, Zhou H S. A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism[J]. Chemical Communications, 2010, 46(34): 6305-6307. |
[78] | He P, Wang Y G, Zhou H S. Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution[J]. Chemical Communications, 2011, 47(38): 10701-10703. |
[79] | Wang Y R, Ohnishi R H, Yoo E, et al. Nano- and micro-sized TiN as the electrocatalysts for ORR in Li-air fuel cell with alkaline aqueous electrolyte[J]. Journal of Materials Chemistry, 2012, 22(31): 15549-15555. |
[80] | Goodenough J B, Kim Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196(16): 6688-6694. |
[81] | Kitaura H, Zhou H S. Electrochemical performance and reaction mechanism of all-solid-state lithium-air batteries composed of lithium, Li1+xAlyGe2-y(PO4)3 solid electrolyte and carbon nanotube air electrode[J]. Energy & Environmental Science, 2012, 5(10): 9077-9084. |
[82] | Markovic N M, Gasteiger H A, Ross P N. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric-acid-solution - rotating ring-Pt(Hkl) disk studies[J]. Journal of Physical Chemistry, 1995, 99(11): 3411-3415. |
[83] | Wu W(武巍), Tian Y Y(田艳艳), Gao J(高军), et al. Application of carbon materials in lithium-air battery and its development[J]. Chinese Journal of Power Sources(电源技术), 2012, 136(4): 581-586. |
[84] | Mitchell R R, Gallant B M, Thompson C V, et al. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8): 2952-2958. |
[85] | Zhang T, Zhou H S. From Li-O2 to Li-air batteries: Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen[J]. Angewandte Chemie-International Edition, 2012, 51(44): 11062-11067. |
[86] | Xu J J, Wang Z L, Xu D, et al. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries[J]. Nature Communications, 2013, 4: Article number: 2438. |
[87] | Lu J, Cheng C, Lau K C, et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries[J]. Nature Communications, 2014, 5: Article number: 4895. |
[88] | Debart A, Paterson A J, Bao J, et al. -MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries[J]. Angewandte Chemie-International Edition, 2008, 47(24): 4521-4524. |
[89] | Wu D F, Guo Z Y, Yin X B, et al. Metal-organic frameworks as cathode materials for Li-O2 batteries[J]. Advanced Materials, 2014, 26(20): 3258-3262. |
[90] | Lim H D, Song H, Kim J, et al. Superior rechargeability and efficiency of lithium-oxygen batteries: Hierarchical air electrode architecture combined with a soluble catalyst[J]. Angewandte Chemie-International Edition, 2014, 53(15): 3926-3931. |
[91] | Read J, Mutolo K, Ervin M, et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery[J]. Journal of the Electrochemical Society, 2003, 150(10): A1351-A1356. |
[92] | McCloskey B D, Bethune D S, Shelby R M, et al. Solvents' critical role in nonaqueous lithium-oxygen battery eectrochemistry[J]. Journal of Physical Chemistry Letters, 2011, 2(10): 1161-1166. |