|
- 2015
锂硫电池硫碳复合正极材料研究现状及展望
|
Abstract:
摘要 二次锂硫电池被视为最具有发展潜力的下一代高能量密度二次电池之一. 但由于正极硫的电导率低(5×10-30 S·cm-1),且在放电过程中产生的中间体多硫化物易溶于有机电解液,致使锂硫电池活性物质利用率降低,溶解后的多硫化物还会迁移到负极,被还原成不溶物Li2S2/Li2S而沉积于负极锂,使电极结构遭受破坏,造成电池容量大幅衰减,循环性能差,从而限制了进一步的开发应用. 研究表明,以碳作为导电骨架的硫碳复合正极材料能在不同程度上解决上述问题,从而有效提高了锂硫电池的放电容量和循环性能. 本文综述了近年来国内外报道的各种锂硫电池正极材料的研究进展,结合作者课题组的研究,重点探讨了硫碳复合正极材料,并对其今后的发展趋势进行了展望
[1] | Su Y S, Manthiram A. A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium-sulfurbatteries[J]. Electrochimica Acta, 2012, 77: 272-278. |
[2] | Liang X, Wen Z Y, Liu Y, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. Journal of Power Sources, 2011, 196(22): 9839-9843. |
[3] | He G, Ji X L, Nazar L. High ‘‘C’’ rate Li-S cathodes: Sulfur imbibed bimodal porous carbons[J]. Energy & Environmental Science, 2011, 4: 2878-2883. |
[4] | Schuster J, He G, Mandlmeier B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 51(15): 3591-3595. |
[5] | Zhou G, Wang D W, Li F, et al. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries[J]. Energy & Environmental Science, 2012, 5(10): 8901-8906. |
[6] | Zheng G, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithiumbatteries[J]. Nano Letters, 2011, 11(10): 4462-4467. |
[7] | Miao L X, Wang W K, Yuan K G, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth-sulfur material[J]. Chemical Communications, 2014, 50: 13231-13234. |
[8] | Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2011, 50(26): 5904-5908. |
[9] | Ding N, Chien S W, Andy Hor T S, et al. Key parameters in design of lithium sulfur batteries[J]. Journal of Power Sources, 2014, 269: 111-116. |
[10] | ManthiramA, Fu Y, Su Y S, Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. |
[11] | Ji X L, Nazar L F. Advances in Li-S batteries[J]. Journal of Materials Chemistry, 2010, 20(44): 9821-9826. |
[12] | Li D, Han F, Wang S, et al. High sulfur loading cathodes fabricated using peapod like, large pore volume mesoporous carbon for lithium-sulfur battery[J]. ACS Applied Materials Interfaces, 2013, 5(6): 2208-2213. |
[13] | CaoY L, Li X L, Aksay I A, et al. Sandwich-type functionalized grapheme sheet-sulfur nanocomposite for rechargeable lithium batteries[J]. Physical Chemistry Chemical Physics, 2011, 13(17): 7660-7665. |
[14] | Wang J L, Yang J, Xie J Y, et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochemistry Communications, 2002, 4(6): 499-502. |
[15] | Zhang B, Qin X, Li G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3: 1531-1537. |
[16] | Liang C D, Dudney N J, Howe J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21(19): 4724-4730. |
[17] | Zhou L, Huang T, Yu A S. Three-dimensional flower-shaped activated porous carbon/sulfur composites a cathode materials for lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2442-2447. |
[18] | Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of The American Chemical Society, 2012, 134(45): 18510-18513. |
[19] | Zheng G, Zhang Q, Cha J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3): 1265-1270. |
[20] | Zhang S M, Zhang Q, Huang J Q, et al. Composite cathodes containing SWCNT@S coaxial nanocables: Facile synthesis, surface modification, and enhanced performance for Li-ion storage[J]. Particle & Particle Systems Characterization, 2013, 30(2): 158-165. |
[21] | Suo L M, Hu Y S, Li H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481. |
[22] | Zhang Y Z, Liu S, Li G C, et al. Sulfur/polyacrylonitrile/carbon multi-compositesas cathode materials for lithium/sulfur battery in the concentrated electrolyte[J]. Journal of Materials Chemistry A, 2014, 2: 4652-4659. |
[23] | Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11: 19-29. |
[24] | Elazari R, Salitra G, Garsuch A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011, 23(47): 5641-5644. |
[25] | Zhang B, Lai C, Zhou Z, et al. Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials[J]. Electrochimica Acta, 2009, 54(14): 3708-3713. |
[26] | Zhang S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231: 153-162. |
[27] | Zhao C R(赵春荣), Wang W K(王维坤), Liu R J(刘荣江), et al. LMC/S composite synthesized by vacuum impregnation at normal temperature[J]. Battery(电池), 2010, 40(1): 6-9. |
[28] | Aurbach D, Pollak E, Elazari R, et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. Journal of The Electrochemical Society, 2009, 156(8): A694-A702. |
[29] | Ji L W, Rao M M, Zheng H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of The American Chemical Society, 2011, 133(46): 18522-18525. |
[30] | Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7): 2644-2647. |
[31] | Zhou L, Lin X J, Huang T, et al. Binder-free phenyl sulfonated graphene/sulfur electrodes with excellent cyclability for lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2014, 2: 5117-5123. |
[32] | Li N W, Zheng M B, Lu H L, et al. High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating[J]. Chemical Communications, 2012, 48: 4106-4108. |
[33] | Wu F, Chen J Z, Li L, et al. Improvement of rate and cycle performance by rapid polyaniline coating of a MWCNT/sulfur cathode[J]. Journal of Physical Chemistry C, 2011, 115(49): 2441-24417. |
[34] | Ji L, Rao M, Aloni S, et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science, 2011, 4: 5053-5059. |
[35] | Wang C H, Chen H W, Dong W L, et al. Sulfur-amine chemistry-based synthesis of multi- walled carbon nanotube-sulfur composites for high performance Li-S batteries[J]. Chemical Communications, 2014, 50: 1202-1204. |
[36] | Xiong S Z, Xie K, Diao Y, et al. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution forlithium-sulfur batteries[J]. Electrochimica Acta, 2012, 83: 78-86. |
[37] | Zhang S S. Role of LiNO3 in rechargeable lithium/sulfur battery[J]. Electrochimica Acta, 2012, 70: 344-348. |
[38] | Zhou L, Lin X J, Huang T, et al. Nitrogen-doped porous carbon nanofiber webs/sulfur composites as cathode materials for lithium-sulfur batteries[J]. Electrochimica Acta, 2014, 116: 210-216. |
[39] | Zheng G Y, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. NanoLetters, 2011, 11(10): 4462-4467. |
[40] | Zhang C F, Wu H B, Yuan C Z, et al. Confining sulfurin double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 51(38): 9592-9595. |
[41] | Chen S Q, Huang X D, Sun B, et al. Multi-shelled hollow carbon nanospheres for lithium-sulfur batteries with superior performances[J]. Journal of Materials Chemistry A, 2014, 2: 16199-16207. |
[42] | Chen S Q, Huang X D, Liu H, et al. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries[J]. Advanced Energy Materials, 2014, 4(8): 1301761. |
[43] | Evers S, Nazar L F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic e?ciency and high practical sulfur content[J]. Chemical Communications, 2012, 48: 1233-1235. |
[44] | Gao X F, Li J Y, Guan D S, et al. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic e?ciency[J]. ACS Applied Materials Interfaces, 2014, 6(6):4154-4159. |
[45] | Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature materials, 2009, 8: 500-506. |
[46] | Zhao M Q, Liu X F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano, 2012, 6(12): 10759-10769. |
[47] | Miao L X(苗力孝). Research of sulfur/carbon composites with net-work structure as cathode materials for lithium sulfur battery[D]. Beijing Institute of Technology, 2014. |