|
- 2015
二元析氧催化剂CoxCr1-xO3/2的制备及性能研究
|
Abstract:
摘要 用热分解法制得不同混合比例的二元金属氧化物催化剂CoxCr1-xO3/2(x = 0,0.2,0.4,0.6,0.8,1),使用SEM、XRD和XPS观察表征催化剂形貌、晶型和价态,使用线性扫描伏安、阶梯波伏安和恒电位测试电极活性、过电位和稳定性. 结果表明,该Co3O4和绿铬矿型Cr2O3混合物形成固溶体CoxCr1-xO3/2. x = 0.2时,Co0.2Cr0.8O3/2电极性能较单一Co3O4和Cr2O3电极好,在高电位(1.0 V vs. Ag/AgCl),其电流强度是Co3O4的3.75倍,Cr2O3的15.2倍,其过电位(η = 0.0703 V)也较Co3O4(η = 0.6109 V)和Cr2O3(η = 0.435 V)小,催化性能最好,在强碱性溶液(pH=13)中有良好的稳定性
[1] | Bajdich M, García-Mota M, Vojvodic A, et al. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water[J]. Journal of the American Chemical Society, 2013, 135(9): 13521-13530. |
[2] | Zhang Y M, Yang S, Evans J R G. Revisiting Hume-Rothery’s rules with artificial neural networks[J]. Acta Materialia, 2008, 56(3): 1094-1105. |
[3] | Gao S J, Dong C F, Luo H, et al. Scanning electrochemical microscopy study on the electrochemical behavior of CrN film formed on Co3O4 stainless steel by magnetron sputtering[J]. Electrochimica Acta, 2013, 114(12): 233-241. |
[4] | Zhuo J Q, Wang T Y, Zhang G, et al. Salts of C60(OH)8 electrodeposited onto a glassy carbon electrode: Surprising catalytic performance in the hydrogen evolution reaction[J]. Angewandte Chemie-International Edition, 2013, 125(10): 11067-11070. |
[5] | Robinson D M, Go Y B, Mui M, et al. Photochemical water oxidation by crystalline polymorphs of manganese oxides: Structural requirements for catalysis[J]. Journal of the American Chemical Society, 2013, 135(3): 3491-3501. |
[6] | Zhuang Z B, Sheng W C, Yan Y S. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction[J]. Advanced Materials, 2014, 26(6): 3950-3955. |
[7] | Cruz-Espinoza A, Ibarra-Galván V, López-Valdivieso A, et al. Synthesis of microporous eskolaite from Cr(VI) using activated carbon as a reductant and template[J]. Journal of Colloid and Interface Science, 2012, 374(5): 321-324. |
[8] | Zhao Q, Yu Z B, Yuan W, et al. Metal-Ci oxygen-evolving catalysts generated in situ in a mild H2O/CO2 environment[J]. International Journal of Hydrogen Energy, 2013, 38(5): 5251-5258. |
[9] | Yu Z B, Zhao Q, Hao G Y, et al. A mild H3BO3 environment for water splitting[J]. International Journal of Hydrogen Energy, 2013, 38(8): 10191-10195. |
[10] | Keav S, Lu Y, Matam S K, et al. Chromium-induced deactivation of a commercial honeycomb noble metal-based CO oxidation catalyst[J]. Applied Catalysis A: General, 2014, 469(1): 259-266. |
[11] | Li X B, Yang S W, Sun J, et al. Enhanced electromagnetic wave absorption performances of Co3O4 nanocube/reduced graphene oxide composite[J]. Synthetic Metals, 2014, 194(8): 52-58. |
[12] | Wu Z S, Ren W C, Wen L, et al. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/alpha-Fe2O3 semiconductor nanoheterostructures[J]. ACS Nano, 2010, 4(2): 3187-3194. |
[13] | Xu C W, Wang H, Shen P K, et al. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells[J]. Advanced Materials, 2007, 19 (13): 4256-4259. |
[14] | Grewe T, Deng X H, Weidenthaler C, et al. Design of ordered mesoporous composite materials and their electrocatalytic activities for water oxidation[J]. Chemistry of Materials, 2013, 25(12): 4926-4935. |
[15] | Liu X J, Chang Z, Luo L, et al. Hierarchical ZnxCo3-xO4 nanoarrays with high activity for electrocatalytic oxygen evolution[J]. Chemistry of Materials, 2014, 26(3): 1889-1895. |
[16] | Bai B Y, Arandiyan H, Li J H. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts[J]. Applied Catalysis B: Environmental, 2013, 142(10): 677-683. |
[17] | Chen S, Zhai T, Lu X H, et al. Large-area manganese oxide nanorod arrays as efficient electrocatalyst for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2012, 37(9): 13350-13354. |
[18] | Zou X X, Goswami A, Asefa T. Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide[J]. Journal of the American Chemical Society, 2013, 135(11): 17242-17245. |
[19] | Zhao Q, Yu Z B, Yuan W, et al. A WO3/Ag-Bi oxygen-evolution catalyst for splitting water under mild conditions[J]. International Journal of Hydrogen Energy, 2012, 37(9): 13249-13255. |
[20] | Wang W, Zhao Q, Dong J X, et al. A novel silver oxides oxygen evolving catalyst for water splitting[J]. International Journal of Hydrogen Energy, 2011, 36(7): 7374-7380. |
[21] | Chen Z L, Chen S H, Li Y H, et al. A recyclable and highly active Co3O4 nanoparticles/titanate nanowire catalyst for organic dyes degradation with peroxymonosulfate[J]. Materials Research Bulletin, 2014, 57(9): 170-176. |