全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

采用AlCl3-Emic-MgCl2室温离子液体电沉积制备铝-镁合金
Electrodeposition of Al-Mg Alloys from Acidic AlCl3-Emic-MgCl2 Room Temperature Ionic Liquids

DOI: 10.13208/j.electrochem.140603

Keywords: 电沉积,铝-镁合金,离子液体,循环伏安,恒电位,
electrodeposition
,Al-Mg alloys,ionic liquids,cyclic voltammetry,constant potential

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 采用恒电流和恒电位技术,以及路易斯酸氯化铝(III)-1-乙基-3-甲基咪唑氯化物离子液体中添加氯化镁(II),室温下在铂和铜阴极表面电沉积制备了铝-镁合金. 合金层中镁的含量随离子液体中氯化镁浓度和所施加的阴极电流密度的增加而增加. 采用X-射线衍射谱(XRD)、扫描电子显微镜(SEM)和能量散射X-射线谱(EDAX)技术,研究了不同电沉积实验条件得到的电沉积层的晶体结构及表面形貌. 增加沉积电流密度,可以制备出致密、光亮和结合力良好的电沉积层. 铝-镁合金电沉积的阴极电流效率可达99%. 应用电化学石英晶体微天平(EQCM)技术研究了电沉积合金的组成. 根据重声阻抗分析得到的质量-电荷(m-Q)曲线斜率计算了金属共沉积层的化学成分

References

[1]  Kautek W, Birkle S. Aluminum-electrocrystallization from metal-organic electrolytes[J]. Electrochimica Acta, 1989, 34(8): 1213-1218.
[2]  Melton T J, Joyce J, Maloy J T, et al. Electrochemical studies of sodium chloride as a lewis buffer for room temperature chloroaluminate molten salts[J]. Journal of the Electrochemical Society, 1990, 137(12): 3865-3869.
[3]  Pitner W R, Hussey C L, Stafford G R. Electrodeposition of nickel-aluminum alloys from the aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt[J]. Journal of the Electrochemical Society, 1996, 143(1): 130-138.
[4]  Endres F, Bukowsk M, Hempelmann R, Natter H. Electrodeposition of nanocrystalline metals and alloys from ionic liquids[J]. Angewandte Chemie International Edition, 2003, 42(29): 3428-3430.
[5]  Song G, Atrens A, John D St, et al. The anodic dissolution of magnesium in chloride and sulphate solutions[J]. Corrosion Science, 1997, 39(10/11): 1981-2004.
[6]  Ambat R, Aung N N, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[J]. Corrosion Science, 2000, 42(8): 1433-1455.
[7]  Stafford G R. The electrodeposition of Al3Ti from chloroaluminate electrolytes[J]. Journal of the Electrochemical Society, 1994, 114(4): 945-953.
[8]  Tsuda T, Hussay C L, Stafford G R. Eectrodeposition of Al-Mo alloys from the lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt[J]. Journal of the Electrochemical Society, 2004, 151(6): C379-C384.
[9]  Stafford G R. The electrodeposition of an aluminum-manganese metallic glass from molten salts[J]. Journal of the Electrochemical Society, 1989, 136(3): 635-639.
[10]  Hussey C L, Laher T M. Elcetrochemical and spectroscopic studies of cobalt(II) in molten aluminum chloride-N-n-butylpyridinium chloride[J]. Inorganic Chemistry, 1981, 20: 4201-4206.
[11]  Hussey C L. Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry[J]. Pure & Applied Chemistry, 1988, 60(12): 1763-1772.
[12]  Abdul-sada A L, Greenway A M, Seddon K R, et al. Fast atom bombardment mass spectrometric evdence for the formation of tris{tetrachloroaluminate(III)}metallate(II) anions, [M(AICI4)3]-, in acidic ambient-temperature ionic liquids[J]. Organic Mass Spectrometry, 1992, 27(5): 648-649.
[13]  Moffat T P. Electrodeposition of Ni1-xAlx in a chloroaluminate melt[J]. Journal of the Electrochemical Society, 1994, 141(11): 3059-3070.
[14]  Ali M R, Nishikata A, Tsuru T. Electrodeposition of aluminum-chromium alloys from AlCl3-BPC melt and its corrosion and high temperature oxidation behaviors[J]. Electrochimica Acta, 1997, 42(15): 2347-2354.
[15]  Ali M R, Nishikata A, Tsuru T. Electrodeposition of Al-Ni intermetallic compounds from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt[J]. Journal of Electroanalytical Chemistry, 2001, 513(2): 111-118.
[16]  Ali M R, Nishikata A, Tsuru T. Electrodeposition of Al-Ti alloys from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt[J]. Indian Journal of Chemical Technology, 2003, 10(1): 14-20.
[17]  Tsuda T, Hussay C L, Stafford G R, et al. Electrodeposition of Al-Zr alloys from lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt[J]. Journal of the Electrochemical Society, 2004, 151(7): C447-C454.
[18]  Lai P K, Kazacos M S. Electrodeposition of aluminium in aluminium chloride/1-methyl-3-ethylimidazolium chloride[J]. Journal of Electroanalytical Chemistry, 1988, 248(2): 431-440.
[19]  Morimitsu M, Tanaka N, Matsunaga M. Induced codeposition of Al-Mg alloys in lewis acidic AlCl3-EMIC room temperature molten salts[J]. Chemistry Letters, 2000, 29(9): 1028-1029.
[20]  Abbott A P, Qiu F, Abood H M A, et al. Double layer, diluents and anode effects upon the electrodeposition of aluminium from chloroaluminate based ionic liquids[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1862-1872.
[21]  Ali M R, Nishikata A, Tsuru T. Electrodeposition of Co-Al alloys of different composition from the AlCl3-BPC-CoCl2 room temperature molten salt[J]. Electrochimica Acta, 1997, 42(12): 18191828.
[22]  Makar G L, Kruger J. Corrosion studies of rapidly solidified magnesium alloys[J]. Journal of the Electrochemical Society, 1990, 137(2): 414-421.
[23]  Zhao Y, Vander Noot T J. Electrodeposition of aluminum from room temperature AlCl3-TMPAC molten salts[J]. Electrochimica Acta, 1997, 42(11): 1639-1643.
[24]  Carlin R T, Osteryoung R A. Aluminum anodization in a basic ambient temperature molten salt[J]. Journal of the Electrochemical Society, 1989, 136(5): 1409-1415.
[25]  Barron J C. Zn and its alloy electrodeposition from deep eutectic solvents[D]. University of Leicester, UK, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133