|
- 2015
“金标银染”放大技术的羟基自由基灵敏检测
|
Abstract:
摘要 本文采用银染增强金纳米粒子(AuNPs)为信号因子,构建了一种新型的灵敏检测羟基自由基(·OH)的DNA电化学传感器. 首先,巯基化的DNA1通过Au—S键自组装于金基底电极表面. 然后,由Fenton反应产生的·OH可引起电极表面DNA1自组装层的氧化损伤裂解,未损伤的DNA1可与功能化AuNPs上的DNA2杂交. 利用AuNPs对银离子的催化还原反应,将银原子沉积在AuNPs的周围,形成一层银外壳,再用差分脉冲伏安法(DPV)技术对沉积的银进行电化学检测,从而实现·OH的定量分析. 研究结果表明, 在最优实验条件下,该传感器检测·OH的线性范围为0.2 ~ 200 μmol·L-1,检测下限为50 nmol·L-1. 该传感器有较好的重复性、选择性,并在抗氧化剂抗氧化能力评估方面具有潜在应用价值
[1] | Mello L D, Hernandez S, Marrazza G, et al. Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor[J]. Biosensors and Bioelectronics, 2006, 21(7): 1374-1382. |
[2] | Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence[J]. Molecular and Cellular Biochemistry, 2004, 266(1/2): 37-56. |
[3] | King P, Anderson V, Edwards J, et al. A stable solid that generates hydroxyl radical upon dissolution in aqueous solutions: Reaction with proteins and nucleic acid[J]. Journal of the American Chemical Society, 1992, 114(13): 5430-5432. |
[4] | Bandyopadhyay U, Das D, Banerjee R K. Reactive oxygen species: Oxidative damage and pathogenesis[J]. Current Science, 1999, 77(5): 658-666. |
[5] | Pou S, Ramos C L, Gladwell T, et al. A kinetic approach to the selection of a sensitive spin trapping system for the detection of hydroxyl radical[J]. Analytical Biochemistry, 1994, 217(1): 76-83. |
[6] | Liang M M, Guo L H. Photoelectrochemical DNA sensor for the rapid detection of DNA damage induced by styrene oxide and the Fenton reaction[J]. Environmental Science & Technology, 2007, 41(2): 658-664. |
[7] | Pritsos C A, Constantinides P P, Tritton T R, et al. Use of high-performance liquid chromatography to detect hydroxyl and superoxide radicals generated from mitomycin C[J]. Analytical Biochemistry, 1985, 150(2): 294-299. |
[8] | Wang Y, Yin X, Shi M, et al. Probing chiral amino acids at sub-picomolar level based on bovine serum albumin enantioselective ?lms coupled with silver-enhanced gold nanoparticles[J]. Talanta, 2006, 69(5): 1240-1245. |
[9] | Huang W T, Xie W Y, Shi Y, et al. A simple and facile strategy based on Fenton-induced DNA cleavage for fluorescent turn-on detection of hydroxyl radicals and Fe2+[J]. Journal of Materials Chemistry, 2011, 22(4): 1477-1481. |
[10] | Raha S, Robinson B H. Mitochondria, oxygen free radicals, disease and ageing[J]. Trends in Biochemical Sciences, 2000, 25(10): 502-508. |
[11] | Loeb L A, Wallace D C, Martin G M. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(52): 18769-18770. |
[12] | Newton G L, Milligan J R. Fluorescence detection of hydroxyl radicals[J]. Radiation Physics and Chemistry, 2006, 75(4): 473-478. |
[13] | Wu L, Yang Y, Zhang H, et al. Sensitive electrochemical detection of hydroxyl radical with biobarcode amplification[J]. Analytica Chimica Acta, 2012, 756: 1-6. |
[14] | Chen Z, Peng Z, Luo Y, et al. Successively ampli?ed electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement[J]. Biosensors and Bioelectronics, 2007, 23(4): 485-491. |
[15] | Lin L, Liu Y, Tang L, et al. Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy[J]. Analyst, 2011, 136(22): 4732-4737. |
[16] | Deng C, Chen J, Nie Z, et al. Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles[J]. Analytical Chemistry, 2008, 81(2): 739-745. |
[17] | Huang Y, Wang T H, Jiang J H, et al. Prostate specific antigen detection using microgapped electrode array immunosensor with enzymatic silver deposition[J]. Clinical chemistry, 2009, 55(5): 964-971. |
[18] | Huang C C, Chiu S H, Huang Y F, et al. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor[J]. Analytical Chemistry, 2007, 79(13): 4798-4804. |
[19] | Jia S P, Liang M M, Guo L H. Photoelectrochemical detection of oxidative DNA damage induced by Fenton reaction with low concentration and DNA-associated Fe2+[J]. The Journal of Physical Chemisty B, 2008, 112(14): 4461-4464. |
[20] | Yu J, Ge L, Huang J, et al. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid[J]. Lab on A Chip, 2011, 11(7): 1286-1291. |
[21] | Liu Y, Hu N. Electrochemical detection of natural DNA damage induced by ferritin/ascobic acid/H2O2 system and amplification of DNA damage by endonuclease Fpg[J]. Biosensors and Bioelectronics, 2009, 25(1): 185-190. |
[22] | Zu Y, Liu H, Zhang Y, et al. Electrochemical detection of in situ DNA damage with layer-by-layer films containing DNA and glucose oxidase and protection effect of catalase layers against DNA damage[J]. Electrochimica Acta, 2009, 54(10): 2706-2712. |
[23] | Cadet J, Delatour T, Douki T, et al. Hydroxyl radicals and DNA base damage[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 424(1): 9-21. |
[24] | Labuda J, Bu?ková M, Heilerova L, et al. Detection of antioxidative activity of plant extracts at the DNA-modified screen-printed electrode[J]. Sensors, 2002, 2(1): 1-10. |
[25] | Huang J, Li T, Chen Z, et al. Rapid electrochemical detection of DNA damage and repair with epigallocatechin gallate, chlorogenic acid and ascorbic acid[J]. Electrochemistry Communications, 2008, 10(8): 1198-1200. |