|
- 2015
超微电极实时监测植物细胞壁参与调控的单细胞活性氧爆发
|
Abstract:
摘要 植物细胞活性氧爆发在植物的抗病以及信号转导中起着非常重要的作用,植物内活性氧产生及代谢受到复杂而精确的机制调控,从而维持正常的活性氧水平以发挥其生理功能. 然而,在单细胞水平开展活性氧爆发实时监测及其调控机制研究一直受到很大的挑战. 本文以碳纤维微盘电极(CFMDE)为基底电极,利用Nafion的模板效应,采用电化学沉积法制得纳米铂颗粒修饰电极(NPt/Nafion/ CFMDE);同时采用基于聚二甲基硅氧烷(PDMS)的软光刻技术,制备了一种高效固定植物悬浮细胞的琼脂糖阵列微孔芯片. 使用NPt/Nafion/CFMDE实时监测了单个拟南芥原生质体活性氧爆发,并证明电化学监测活性氧的主要成分为过氧化氢. 在此基础上,采用浅层培养法培养原生质体再生植物细胞壁. 电化学监测结果表明,与单个原生质体相比,植物细胞在受到刺激时释放的过氧化氢量显著降低;然而当采用过氧化物酶抑制剂抑制植物细胞壁上过氧化物酶活性后,植物细胞释放过氧化氢量显著回升. 研究结果表明细胞壁在活性氧爆发过程具有很好的调控功能,可望促进植物细胞活性氧爆发及其调控机制的研究
[1] | Orozco-Cardenas M L, Narvaez-Vasquez J, Ryan C A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate[J]. Plant Cell, 2001, 13(1): 179-191. |
[2] | Srivastava V, Schinkel H, Witzell J, et al. Downregulation of high-isoelectric-point extracellular superoxide dismutase mediates alterations in the metabolism of reactive oxygen species and developmental disturbances in hybrid aspen[J]. Plant Journal. 2007, 49(1): 135-148. |
[3] | Kotchoni S O, Gachomo E W. The reactive oxygen species network pathways: An essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants[J]. Journal of Biosciences, 2006, 31(3):389-404. |
[4] | Yamashiro N, Uchida S, Satoh Y, et al. Determination of hydrogen peroxide in water by chemiluminescence detection, (i) flow injection type hydrogen peroxide detection system[J]. Journal of Nuclear Science and Technology, 2004, 41(9):890- 897. |
[5] | Schuhmann W, Schulte A. Single-cell microelectrochemistry[J]. Angewandte Chemie International Edition, 2007, 46(46): 8760-8777. |
[6] | Ai F, Chen H, Zhang S H, et al. Real-time monitoring of oxidative burst from single plant protoplastsusin microelectrochemical sensors modified by platinum nanoparticles[J]. Analytical Chemistry, 2009, 81(20): 8453-8458. |
[7] | Patykowski J. Role of hydrogen peroxide and apoplastic peroxidase in tomato-botrytis cinerea interaction [J]. Acta Physiologiae Plantarum, 2006, 28(6): 589-598. |
[8] | Gilroy S, Swanson S. Ros in plant development[J]. Physiologia Plantarum, 2010, 138(4): 384-392. |
[9] | Torres M A. Ros in biotic interactions[J]. Physiologia Plantarum, 2010, 138(4): 414-429. |
[10] | Minibayeva F, Kolesnikov O, Chasov A, et al. Wound-induced apoplastic peroxidase activities: Their roles in the production and detoxification of reactive oxygen species[J]. Plant Cell and Environment, 2009, 32(5): 497-508. |
[11] | Forsberg J, Landgren M, Glimelius, K. Fertile somatic hybrids between brassica napus and arabidopsis thaliana[J]. Plant Science, 1994, 95(2): 213-223. |
[12] | Saka K, Katterman F R, Thomas J C. Cell regeneration and sustained division of protoplasts from cotton[J]. Plant Cell Reports, 1987, 6(6): 470-472. |
[13] | Morina F, JovanovicL, Mojovic M, et al. Zinc- induced oxidative stress in verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall[J]. Physiologia Plantarum, 2010, 140(3): 209-224. |
[14] | Brisch E, Daggett M A, Suprenant K A. Cell cycle-dependent phosphorylation of the 77 kda echinoderm microtubule-associated protein (EMAP) in vivo and association with the p34(cdc2) kinase[J]. Journal of Cell Science, 1996, 109(12): 2885-2893. |
[15] | Amatore C, Hu R, Guille M, et al. In situ electrochemical monitoring of reactive oxygen and nitrogen species released by single mg63 osteosarcoma cell submitted to a mechanical stress[J]. The Journal of Chemical Physics, 2010, 12(34): 10048-10054. |
[16] | Deepak S A, Ishii H, Park P. Acibenzolar-s-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack[J].Physiological and Molecular Plant Pathology, 2006, 69(1): 52-61. |
[17] | Chen Z Z, Li Q L, Wang X, et al. Potent method for the simultaneous determination of glutathione and hydrogen peroxide in mitochondrial compartments of apoptotic cells with microchip electrophoresis-laser induced fluorescence[J]. Analytical Chemistry, 2010, 82(5): 2006-2012. |
[18] | Gong X C, Li Q L, Xu K H, et al. A new route for simple and rapid determination of hydrogen peroxide in raw264.7 macrophages by microchip electrophoresis[J]. Electrophoresis, 2009, 30(11): 1983-1990. |
[19] | Thomas T D. Isolation, callus formation and plantlet regeneration from mesophyll protoplasts of tylophora indica (burm. F.) merrill: An important medicinal plant[J]. In Vitro Cellular & Developmental Biology - Plant, 2009, 45(5): 591-598. |
[20] | Xia Y, Whitesides G M. Soft lithography[J]. Angewandte Chemie International Edition, 1998, 37(5): 550-575. |
[21] | Wightman R M. Probing cellular chemistry in biological systems with microelectrodes[J]. Science, 2006, 311(5767): 1570-1574. |
[22] | Amatore C, Arbault S, Guille M, et al. Electrochemical monitoring of single cell secretion: Vesicular exocytosis and oxidative stress[J]. Chemical Reviews, 2008, 108(7): 2585-2621. |
[23] | Quan L J, Zhang B, Shi W W, et al. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network[J]. Journal of Integrative Plant Biology, 2008, 50(1): 2-18. |
[24] | Luo Y, Liu Y B, Dong Y X, et al. Expression of a putative alfalfa helicase increases tolerance to abiotic stress in arabidopsis by enhancing the capacities for ros scavenging and osmotic adjustment[J]. Journal of Plant Physiology, 2009, 166(4): 385-394. |
[25] | Wightman R M, Jankowski J A , Kennedy R T, et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells[J]. Proceedings of the National Academy of Sciences, 1991, 88(23): 10754-10758. |
[26] | Torres M A, Jones J D, Dangl J L. Reactive oxygen species signaling in response to pathogens[J]. Plant Physiology, 2006, 141(2): 373-378. |
[27] | Gemes K , Poor P, Horvath E, et al. Cross-talk between salicylic acid and nacl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity[J]. Physiologia Plantarum, 2011, 142(2): 179-192. |
[28] | Shetty N P, Jorgensen H J L, Jensen J D, et al. Roles of reactive oxygen species in interactions between plants and pathogens[J]. European Journal of Plant Pathology, 2008, 121(3): 267-280. |
[29] | Dixit R, Cyr R. Cell damage and reactive oxygen species production induced by fluorescence microscopy: Effect on mitosis and guidelines for non-invasive fluorescence microscopy[J]. Plant Journal, 2003, 36(2): 280-290. |
[30] | O’Brien J A, Daudi A, Finch P, et al. Peroxidase-dependent apoplastic oxidative burst in cultured arabidopsis cells functions in MAMP-elicited defense[J]. Plant Physiology, 2012, 158(4): 2013-2027. |
[31] | Bolwell G P, Davies D R, Gerrish C, et al. Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms[J]. Plant Physiology, 1998, 116(4): 1379-1385. |
[32] | Li H M, Li O L, Wang X, et al. Simultaneous determination of superoxide and hydrogen peroxide in macrophage raw 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection[J]. Analytical Chemistry, 2009, 81(6): 2193-2198. |