全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PPAR Research  2012 

PPARγ in Inflammatory Bowel Disease

DOI: 10.1155/2012/620839

Full-Text   Cite this paper   Add to My Lib

Abstract:

Peroxisome proliferator-activated receptor gamma (PPARγ) is member of a family of nuclear receptors that interacts with nuclear proteins acting as coactivators and corepressors. The colon is a major tissue which expresses PPARγ in epithelial cells and, to a lesser degree, in macrophages and lymphocytes and plays a role in the regulation of intestinal inflammation. Indeed, both natural and synthetic PPARγ ligands have beneficial effects in different models of experimental colitis, with possible implication in the therapy of inflammatory bowel disease (IBD). This paper will specifically focus on potential role of PPARγ in the predisposition and physiopathology of IBD and will analyze its possible role in medical therapy. 1. Introduction The peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor highly expressed in adipose tissue but also intestine, playing a key role in regulation of insulin resistance and inflammation. Recently its role in intestinal diseases, especially colon cancer and intestinal inflammation, is emerging. The discovery that it is the major functional receptor mediating the aminosalicylate activities in inflammatory bowel diseases (IBD) has further enhanced the interest for the role of this receptor in the regulation of gut homeostasis, with possible implication for newer therapeutic targeting. After an extensive search of medical literature in English language from the PubMed database, we aim in this paper to focus on potential role of PPARγ in the predisposition and physiopathology of IBD and to analyze its role in experimental colitis and potential therapy for IBD. 2. IBD and PPARγ: Friend or Foe The inflammatory bowel diseases (IBD), Crohn’s disease (CD), and ulcerative colitis (UC) are common causes of gastrointestinal illness characterised by chronic, relapsing intestinal inflammation, often presenting in early childhood [1]. The incidence varies according to geographical location and in Northern Europe IBD may affect upto one in two hundred of the population [2]. The division into CD and UC is made on the basis of clinical, radiological, endoscopic, and histological features. Common clinical features of CD include abdominal pain, diarrhea, weight loss, and fever. Rectal blood loss is not always a feature and up to 10% of patients with CD may not have diarrhea. Inflammatory changes are patchy in distribution and may occur anywhere within the gastrointestinal tract from the mouth to the anus. Approximately 40% of patients with CD will have disease involving both small and large bowel, in 30% the disease is

References

[1]  D. K. Podolsky, “Inflammatory bowel disease,” New England Journal of Medicine, vol. 347, no. 6, pp. 417–429, 2002.
[2]  J. Cosnes, C. Gowerrousseau, P. Seksik, and A. Cortot, “Epidemiology and natural history of inflammatory bowel diseases,” Gastroenterology, vol. 140, no. 6, pp. 1785–1794, 2011.
[3]  S. Danese and C. Fiocchi, “Ulcerative colitis,” New England Journal of Medicine, vol. 365, pp. 1713–1725, 2011.
[4]  B. Khor, A. Gardet, and R. J. Xavier, “Genetics and pathogenesis of inflammatory bowel disease,” Nature, vol. 474, no. 7351, pp. 307–317, 2011.
[5]  C. A. Anderson, G. Boucher, C. W. Lees et al., “Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47,” Nature Genetics, vol. 43, no. 3, pp. 246–252, 2011.
[6]  A. Franke, D. P. B. McGovern, J. C. Barrett et al., “Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci,” Nature Genetics, vol. 42, no. 12, pp. 1118–1125, 2010.
[7]  J. H. Cho, “Immunochip-based analysis of a large IBD case-control cohort identifies 50 novel loci, refining definitions of disease pathways,” Gastroenterology, vol. 142, supplement 1, pp. S149–S150, 2012.
[8]  S. Poliska, A. Penyige, P. L. Lakatos et al., “Association of peroxisome proliferator-activated receptor gamma polymorphisms with inflammatory bowel disease in a hungarian cohort,” Inflammatory Bowel Diseases, vol. 18, no. 3, pp. 472–479, 2012.
[9]  Y. Aoyagi, S. Nagata, T. Kudo et al., “Peroxisome proliferator-activated receptor γ 2 mutation may cause a subset of ulcerative colitis,” Pediatrics International, vol. 52, no. 5, pp. 729–734, 2010.
[10]  U. K. Shrestha, O. Karimi, J. B. A. Crusius et al., “Distribution of peroxisome proliferator-activated receptor-gamma polymorphisms in Chinese and Dutch patients with inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 16, no. 2, pp. 312–319, 2010.
[11]  O. Atug, V. Tahan, F. Eren et al., “Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-gamma (PPARγ) gene in inflammatory bowel disease,” Journal of Gastrointestinal and Liver Diseases, vol. 17, no. 4, pp. 433–437, 2008.
[12]  J. Mwinyi, C. Grete-Wenger, J. J. Eloranta, and G. A. Kullak-Ublick, “The impact of PPARγ genetic variants on IBD susceptibility and IBD disease course,” PPAR Research, vol. 2012, Article ID 349469, 13 pages, 2012.
[13]  V. Andersen, J. Christensen, A. Ernst et al., “Polymorphisms in NF-κB, PXR, LXR, PPARγ and risk of infammatory bowel disease,” World Journal of Gastroenterology, vol. 17, no. 2, pp. 197–206, 2011.
[14]  Z.-F. Zhang, N. Yang, G. Zhao, L. Zhu, and L.-X. Wang, “Association between the Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma 2 and inflammatory bowel disease: a meta-analysis,” PLoS One, vol. 7, no. 1, Article ID e30551, 2012.
[15]  L. Dubuquoy, C. Rousseaux, X. Thuru et al., “PPARγ as a new therapeutic target in inflammatory bowel diseases,” Gut, vol. 55, no. 9, pp. 1341–1349, 2006.
[16]  L. Dubuquoy, E. ? Jansson, S. Deeb et al., “Impaired expression of peroxisome proliferator-activated receptor γin ulcerative colitis,” Gastroenterology, vol. 124, no. 5, pp. 1265–1276, 2003.
[17]  J. K. Yamamoto-Furusho, A. Pe?aloza-Coronel, F. Sánchez-Mu?oz, R. Barreto-Zu?iga, and A. Dominguez-Lopez, “Peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression is downregulated in patients with active ulcerative colitis,” Inflammatory Bowel Diseases, vol. 17, no. 2, pp. 680–681, 2011.
[18]  K. Wendelsdorf, J. Bassaganya-Riera, R. Hontecillas, and S. Eubank, “Model of colonic inflammation: immune modulatory mechanisms in inflammatory Bowel disease,” Journal of Theoretical Biology, vol. 264, no. 4, pp. 1225–1239, 2010.
[19]  B. M. Spiegelman, “PPAR-γ: adipogenic regulator and thiazolidinedione receptor,” Diabetes, vol. 47, no. 4, pp. 507–514, 1998.
[20]  A. Mansén, H. Guardiola-Diaz, J. Rafter, C. Branting, and J. ?. Gustafsson, “Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa,” Biochemical and Biophysical Research Communications, vol. 222, no. 3, pp. 844–851, 1996.
[21]  C. G. Su, X. Wen, S. T. Bailey et al., “A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response,” Journal of Clinical Investigation, vol. 104, no. 4, pp. 383–389, 1999.
[22]  L. J. Saubermann, A. Nakajima, K. Wada et al., “Peroxisome proliferator-activated receptor gamma agonist ligands stimulate a Th2 cytokine response and prevent acute colitis,” Inflammatory Bowel Diseases, vol. 8, no. 5, pp. 330–339, 2002.
[23]  J. D. Ramakers, M. I. Verstege, G. Thuijls, A. A. Te Velde, R. P. Mensink, and J. Plat, “The PPARγ agonist rosiglitazone impairs colonic inflammation in mice with experimental colitis,” Journal of Clinical Immunology, vol. 27, no. 3, pp. 275–283, 2007.
[24]  T. Takagi, Y. Naito, N. Tomatsuri et al., “Pioglitazone, a PPAR-γ ligand, provides protection from dextran sulfate sodium-induced colitis in mice in association with inhibition of the NF-κB-cytokine cascade,” Redox Report, vol. 7, no. 5, pp. 283–289, 2002.
[25]  R. Hontecillas, W. T. Horne, M. Climent et al., “Immunoregulatory mechanisms of macrophage PPAR-γ in mice with experimental inflammatory bowel disease,” Mucosal Immunology, vol. 4, no. 3, pp. 304–313, 2011.
[26]  K. L. Schaefer, S. Denevich, C. Ma et al., “Intestinal antiinflammatory effects of thiazolidenedione peroxisome proliferator-activated receptor-γ ligands on T helper type 1 chemokine regulation include nontranscriptional control mechanisms,” Inflammatory Bowel Diseases, vol. 11, no. 3, pp. 244–252, 2005.
[27]  J. Bassaganya-Riera and R. Hontecillas, “CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD,” Clinical Nutrition, vol. 25, no. 3, pp. 454–465, 2006.
[28]  J. Bassaganya-Riera, M. Viladomiu, M. Pedragosa, C. De Simone, and R. Hontecillas, “Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria,” PLoS One, vol. 7, no. 4, Article ID e34676, 2012.
[29]  S. N. Lewis, L. Brannan, A. J. Guri et al., “Dietary α-eleostearic acid ameliorates experimental inflammatory Bowel disease in mice by activating peroxisome proliferator-activated receptor-γ,” Plos One, vol. 6, no. 8, Article ID e24031, 2011.
[30]  P. Desreumaux, L. Dubuquoy, S. Nutten et al., “Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor γ (PPARγ) heterodimer: a basis for new therapeutic strategies,” Journal of Experimental Medicine, vol. 193, no. 7, pp. 827–838, 2001.
[31]  M. Sánchez-Hidalgo, A. R. Martín, I. Villegas, and C. Alarcón de la Lastra, “Rosiglitazone, a PPARγ ligand, modulates signal transduction pathways during the development of acute TNBS-induced colitis in rats,” European Journal of Pharmacology, vol. 562, no. 3, pp. 247–258, 2007.
[32]  S. Rocchi, F. Picard, J. Vamecq et al., “A unique PPARγ ligand with potent insulin-sensitizing yet weak adipogenic activity,” Molecular Cell, vol. 8, no. 4, pp. 737–747, 2001.
[33]  C. Rousseaux, B. Lefebvre, L. Dubuquoy et al., “Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-γ,” Journal of Experimental Medicine, vol. 201, no. 8, pp. 1205–1215, 2005.
[34]  C. Zeng, J. H. Xiao, M. J. Chang, and J. L. Wang, “Beneficial effects of THSG on acetic acid-induced experimental colitis: involvement of upregulation of PPAR-γ and inhibition of the NF-κB inflammatory pathway,” Molecules, vol. 16, pp. 8552–8568, 2011.
[35]  A. Nakajima, K. Wada, H. Miki et al., “Endogenous PPARγ mediates anti-inflammatory activity in murine ischemia-reperfusion injury,” Gastroenterology, vol. 120, no. 2, pp. 460–469, 2001.
[36]  S. Cuzzocrea, B. Pisano, L. Dugo et al., “Rosiglitazone and 15-deoxy-Δ12,14-prostaglandin J 2, ligands of the peroxisome proliferator-activated receptor-γ (PPAR-γ), reduce ischaemia/reperfusion injury of the gut,” British Journal of Pharmacology, vol. 140, no. 2, pp. 366–376, 2003.
[37]  N. Sato, R. A. Kozar, L. Zou et al., “Peroxisome proliferator-activated receptor γ mediates protection against cyclooxygenase-2-induced gut dysfunction in a rodent model of mesenteric ischemia/reperfusion,” Shock, vol. 24, no. 5, pp. 462–469, 2005.
[38]  N. Sato, F. A. Moore, B. C. Kone et al., “Differential induction of PPAR-γ by luminal glutamine and iNOS by luminal arginine in the rodent postischemic small bowel,” American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 290, no. 4, pp. G616–G623, 2006.
[39]  R. Hontecillas, M. J. Wannemeulher, D. R. Zimmerman et al., “Nutritional regulation of porcine bacterial-induced colitis by conjugated linoleic acid,” Journal of Nutrition, vol. 132, no. 7, pp. 2019–2027, 2002.
[40]  T. Tanaka, H. Kohno, S. I. Yoshitani et al., “Ligands for peroxisome proliferator-activated receptors α and γ inhibit chemically induced colitis and formation of aberrant crypt foci in rats,” Cancer Research, vol. 61, no. 6, pp. 2424–2428, 2001.
[41]  M. Sánchez-Hidalgo, A. R. Martín, I. Villegas, and C. Alarcón De La Lastra, “Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces chronic colonic inflammation in rats,” Biochemical Pharmacology, vol. 69, no. 12, pp. 1733–1744, 2005.
[42]  J. Bassaganya-Riera, K. Reynolds, S. Martino-Catt et al., “Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease,” Gastroenterology, vol. 127, no. 3, pp. 777–791, 2004.
[43]  C. Lytle, T. J. Tod, K. T. Vo, J. W. Lee, R. D. Atkinson, and D. S. Straus, “The peroxisome proliferator-activated receptor γ ligand rosiglitazone delays the onset of inflammatory bowel disease in mice with interleukin 10 deficiency,” Inflammatory Bowel Diseases, vol. 11, no. 3, pp. 231–243, 2005.
[44]  K. Sugawara, T. S. Olson, C. A. Moskaluk et al., “Linkage to peroxisome proliferator-activated receptor-γ in SAMP1/YitFc mice and in human Crohn's disease,” Gastroenterology, vol. 128, no. 2, pp. 351–360, 2005.
[45]  Y. M. Shah, K. Morimura, and F. J. Gonzalez, “Expression of peroxisome proliferator-activated receptor-γ in macrophage suppresses experimentally induced colitis,” American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 292, no. 2, pp. G657–G666, 2007.
[46]  A. J. Guri, S. K. Mohapatra, W. T. Horne, R. Hontecillas, and J. Bassaganya-Riera, “The Role of T cell PPAR γ in mice with experimental inflammatory bowel disease,” BMC Gastroenterology, vol. 10, article no. 60, 2010.
[47]  S. K. Mohapatra, A. J. Guri, M. Climent et al., “Immunoregulatory actions of epithelial cell PPAR γ at the colonic mucosa of mice with experimental inflammatory bowel disease,” PLoS One, vol. 5, no. 4, Article ID e10215, 2010.
[48]  J. Auwerx, E. Baulieu, M. Beato et al., “A unified nomenclature system for the nuclear receptor superfamily,” Cell, vol. 97, no. 2, pp. 161–163, 1999.
[49]  T. M. Willson, P. J. Brown, D. D. Sternbach, and B. R. Henke, “The PPARs: from orphan receptors to drug discovery,” Journal of Medicinal Chemistry, vol. 43, no. 4, pp. 527–550, 2000.
[50]  S. A. Kliewer, K. Umesono, D. J. Noonan, R. A. Heyman, and R. M. Evans, “Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors,” Nature, vol. 358, no. 6389, pp. 771–774, 1992.
[51]  K. Yamazaki, M. Shimizu, M. Okuno et al., “Synergistic effects of RXRα and PPARγ ligands to inhibit growth in human colon cancer cells—phosphorylated RXRα is a critical target for colon cancer management,” Gut, vol. 56, no. 11, pp. 1557–1563, 2007.
[52]  L. Dubuquoy, S. Dharancy, S. Nutten, S. Pettersson, J. Auwerx, and P. Desreumaux, “Role of peroxisome proliferator-activated receptor γ and retinoid X receptor heterodimer in hepatogastroenterological diseases,” Lancet, vol. 360, no. 9343, pp. 1410–1418, 2002.
[53]  B. M. Spiegelman, “PPARγ in monocytes: less pain, any gain?” Cell, vol. 93, no. 2, pp. 153–155, 1998.
[54]  R. Marion-Letellier, M. Butler, P. Déchelotte, R. J. Playford, and S. Ghosh, “Comparison of cytokine modulation by natural peroxisome proliferator-activated receptor γ ligands with synthetic ligands in intestinal-like Caco-2 cells and human dendritic cells—potential for dietary modulation of peroxisome proliferator-activated receptor γ in intestinal inflammation,” American Journal of Clinical Nutrition, vol. 87, no. 4, pp. 939–948, 2008.
[55]  C. D. Allred, D. R. Talbert, R. C. Southard, X. Wang, and M. W. Kilgore, “PPARγ1 as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells,” Journal of Nutrition, vol. 138, no. 2, pp. 250–256, 2008.
[56]  B. Salh, K. Assi, V. Templeman et al., “Curcumin attenuates DNB-induced murine colitis,” American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 285, no. 1, pp. G235–G243, 2003.
[57]  Y. Deguchi, A. Andoh, O. Inatomi et al., “Curcumin prevents the development of dextran sulfate sodium (DSS)-induced experimental colitis,” Digestive Diseases and Sciences, vol. 52, no. 11, pp. 2993–2998, 2007.
[58]  C. S. Kim, W. H. Park, J. Y. Park et al., “Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor γ in HT-29 human colon cancer cells,” Journal of Medicinal Food, vol. 7, no. 3, pp. 267–273, 2004.
[59]  K. L. Han, M. H. Jung, J. H. Sohn, and J. K. Hwang, “Ginsenoside 20(S)-protopanaxatriol (PPT) activates peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 adipocytes,” Biological and Pharmaceutical Bulletin, vol. 29, no. 1, pp. 110–113, 2006.
[60]  J. T. Hwang, S. H. Kim, M. S. Lee et al., “Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte,” Biochemical and Biophysical Research Communications, vol. 364, no. 4, pp. 1002–1008, 2007.
[61]  K. Morikawa, C. Ikeda, M. Nonaka et al., “Epigallocatechin gallate-induced apoptosis does not affect adipocyte conversion of preadipocytes,” Cell Biology International, vol. 31, no. 11, pp. 1379–1387, 2007.
[62]  M. Schwab, V. Reynders, S. Loitsch, D. Steinhilber, J. Stein, and O. Schr?der, “Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NFκB signalling,” Molecular Immunology, vol. 44, no. 15, pp. 3625–3632, 2007.
[63]  S. E. Campbell, W. L. Stone, S. G. Whaley, M. Qui, and K. Krishnan, “Gamma tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma expression in SW 480 human colon cancer cell lines,” BMC Cancer, vol. 3, article no. 25, 2003.
[64]  H. Vunta, F. Davis, U. D. Palempalli et al., “The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12,14-prostaglandin J2 in macrophages,” Journal of Biological Chemistry, vol. 282, no. 25, pp. 17964–17973, 2007.
[65]  J. Bassaganya-Riera and R. Hontecillas, “Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory Bowel disease,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 5, pp. 569–573, 2010.
[66]  K. Katayama, K. Wada, A. Nakajima et al., “A novel PPARγ gene therapy to control inflammation associated with inflammatory bowel disease in a murine model,” Gastroenterology, vol. 124, no. 5, pp. 1315–1324, 2003.
[67]  R. Marion-Letellier, P. Déchelotte, M. Lacucci, and S. Ghosh, “Dietary modulation of peroxisome proliferator-activated receptor gamma,” Gut, vol. 58, no. 4, pp. 586–593, 2009.
[68]  J. D. Lewis, G. R. Lichtenstein, R. B. Stein et al., “An open-label trial of the PPARγ ligand rosiglitazone for active ulcerative colitis,” American Journal of Gastroenterology, vol. 96, no. 12, pp. 3323–3328, 2001.
[69]  H. L. Liang and Q. Ouyang, “A clinical trial of rosiglitazone and 5-aminosalicylate combination for ulcerative colitis,” Zhonghua Nei ke Za Zhi, vol. 45, no. 7, pp. 548–551, 2006.
[70]  J. D. Lewis, G. R. Lichtenstein, J. J. Deren et al., “Rosiglitazone for active ulcerative colitis: a randomized placebo-controlled trial,” Gastroenterology, vol. 134, no. 3, pp. 688–695, 2008.
[71]  G. Pedersen and J. Brynskov, “Topical rosiglitazone treatment improves ulcerative colitis by restoring peroxisome proliferator-activated receptor-γ activity,” American Journal of Gastroenterology, vol. 105, no. 7, pp. 1595–1603, 2010.
[72]  S. Ulrich, S. M. Loitsch, O. Rau et al., “Peroxisome proliferator-activated receptor γ as a molecular target of resveratrol-induced modulation of polyamine metabolism,” Cancer Research, vol. 66, no. 14, pp. 7348–7354, 2006.
[73]  N. J. Talley, M. T. Abreu, J. P. Achkar et al., “An evidence-based systematic review on medical therapies for inflammatory bowel disease,” American Journal of Gastroenterology, vol. 106, supplement 1, pp. S2–S25, 2011.
[74]  L. Fajas, D. Auboeuf, E. Raspé et al., “The organization, promoter analysis, and expression of the human PPARγ gene,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18779–18789, 1997.
[75]  C. N. Ellis, J. N. Barker, A. E. Haig, C. A. Parker, S. Daly, and D. A. Jayawardene, “Placebo response in two long-term randomized psoriasis studies that were negative for rosiglitazone,” American Journal of Clinical Dermatology, vol. 8, no. 2, pp. 93–102, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133