全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PPAR Research  2012 

Role of PPARs in Trypanosoma cruzi Infection: Implications for Chagas Disease Therapy

DOI: 10.1155/2012/528435

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chagas disease, which is caused by Trypanosoma cruzi (T. cruzi), remains a substantial public health concern and an important cause of morbidity and mortality in Latin America. T. cruzi infection causes an intense inflammatory response in diverse tissues by triggering local expression of inflammatory mediators, which results in the upregulation of the levels of cytokines and chemokines, and important cardiac alterations in the host, being one of the most characteristic damages of Chagas disease. Therefore, controlling the inflammatory reaction becomes critical for the control of the proliferation of the parasite and of the evolution of Chagas disease. The nuclear receptors known as peroxisome proliferator-activated receptors (PPARs) have emerged as key regulators of lipid metabolism and inflammation. The precise role of PPAR ligands in T. cruzi infection or in Chagas disease is poorly understood. This review summarizes our knowledge about T. cruzi infection as well as about the activation of PPARs and the potential role of their ligands in the resolution of inflammation, with the aim to address a new pharmacological approach to improve the host health. 1. Introduction Chagas disease is widely distributed throughout Latin America, thus causing a serious public health problem. It is considered the parasitic disease that leads to the greatest economic burden in Latin America due to its prolonged chronicity. Reasonably, public control programs normally focus their resources and strategies on the elimination of insect vectors associated with human habitat and relegate the infected patient. Moreover, migration from rural to urban areas has changed the epidemiology of the disease. While in the 1930’s 70% of Latin Americans lived in rural areas, currently about 70% live in urban areas. The infection was primarily rural and became urban transmissible by blood transfusion. In recent decades, the number of donors with positive serology has increased in endemic countries. Thus, there is a need for new strategies to prevent or stop the cardiac consequences of T. cruzi infection, with an affordable cost to the health system and patients. The host responds to invasion by the activation of inflammation and induction of innate and specific immunity. The infectious inflammatory myocarditis generated by T. cruzi induces an inflammatory response that affects the heart tissue and function. Moreover, the immune system can act with autoimmune reaction with infiltration of macrophages and/or cell-damaging attack. Therefore, the anti-inflammatory actions of peroxisome

References

[1]  P. J. Hotez, D. H. Molyneux, A. Fenwick et al., “Control of neglected tropical diseases,” New England Journal of Medicine, vol. 357, no. 10, pp. 1018–1027, 2007.
[2]  L. M. Deane, “Animal reservoirs of Trypanosoma cruzi in Brazil,” Revista Brasileira de Malariologia e Doen?as Tropicais, vol. 16, pp. 27–48, 1964.
[3]  A. Rassi Jr., A. Rassi, and J. A. Marin-Neto, “Chagas disease,” The Lancet, vol. 375, no. 9723, pp. 1388–1402, 2010.
[4]  A. Prata, “Clinical and epidemiological aspects of Chagas disease,” Lancet Infectious Diseases, vol. 1, no. 2, pp. 92–100, 2001.
[5]  J. C. P. Dias, “Natural history of Chagas' disease,” Arquivos Brasileiros de Cardiologia, vol. 65, no. 4, pp. 359–366, 1995.
[6]  R. L. Tarleton, R. Reithinger, J. A. Urbina, U. Kitron, and R. E. Gürtler, “The challenges of Chagas disease—Grim outlook or glimmer of hope?” PLoS Medicine, vol. 4, no. 12, article e332, 2007.
[7]  A. Rassi Jr., A. Rassi, W. C. Little et al., “Development and validation of a risk score for predicting death in Chagas' heart disease,” New England Journal of Medicine, vol. 355, no. 8, pp. 799–808, 2006.
[8]  J. H. Maguire, “Chagas' disease—can we stop the deaths?” New England Journal of Medicine, vol. 355, no. 8, pp. 760–761, 2006.
[9]  J. A. Marin-Neto, E. Cunha-Neto, B. C. Maciel, and M. V. Sim?es, “Pathogenesis of chronic Chagas heart disease,” Circulation, vol. 115, no. 9, pp. 1109–1123, 2007.
[10]  F. S. Machado, G. A. Martins, J. C. Aliberti, F. L. Mestriner, F. Q. Cunha, and J. S. Silva, “Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity,” Circulation, vol. 102, no. 24, pp. 3003–3008, 2000.
[11]  F. S. Machado, J. T. Souto, M. A. Rossi et al., “Nitric oxide synthase-2 modulates chemokine production by Trypanosoma cruzi-infected cardiac myocytes,” Microbes and Infection, vol. 10, no. 14-15, pp. 1558–1566, 2008.
[12]  E. Hovsepian, G. A. Mirkin, F. Penas, et al., “Modulation of inflamatory response and parasitism by 15-Deoxy- 12,14 prostaglandin J(2) in Trypanosoma cruzi-infected cardyomyocites,” International Journal for Parasitology, vol. 41, pp. 553–562, 2011.
[13]  N. R. N. Committee, “A unified nomenclature system for the nuclear receptor superfamily,” Cell, vol. 97, no. 2, pp. 161–163, 1999.
[14]  D. J. Mangelsdorf and R. M. Evans, “The RXR heterodimers and orphan receptors,” Cell, vol. 83, no. 6, pp. 841–850, 1995.
[15]  C. K. Glass and M. G. Rosenfeld, “The coregulator exchange in transcriptional functions of nuclear receptors,” Genes and Development, vol. 14, no. 2, pp. 121–141, 2000.
[16]  S. A. Kliewer, K. Umesono, D. J. Noonan, R. A. Heyman, and R. M. Evans, “Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors,” Nature, vol. 358, no. 6389, pp. 771–774, 1992.
[17]  S. A. Kliewer, B. M. Forman, B. Blumberg et al., “Differential expression and activation of a family of murine peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7355–7359, 1994.
[18]  P. Escher and W. Wahli, “Peroxisome proliferator-activated receptors: insight into multiple cellular functions,” Mutation Research, vol. 448, no. 2, pp. 121–138, 2000.
[19]  I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990.
[20]  A. Castrillo and P. Tontonoz, “Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation,” Annual Review of Cell and Developmental Biology, vol. 20, pp. 455–480, 2004.
[21]  P. R. Devchand, H. Keller, J. M. Peters, M. Vazquez, F. J. Gonzalez, and W. Wahli, “The PPARα-leukotriene B4 pathway to inflammation control,” Nature, vol. 384, no. 6604, pp. 39–43, 1996.
[22]  D. S. Straus and C. K. Glass, “Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms,” Trends in Immunology, vol. 28, no. 12, pp. 551–558, 2007.
[23]  J. A. Madrazo and D. P. Kelly, “The PPAR trio: regulators of myocardial energy metabolism in health and disease,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 6, pp. 968–975, 2008.
[24]  P. Lockyer, J. C. Schisler, C. Patterson, and M. S. Willis, “Minireview: won't get fooled again: the nonmetabolic roles of peroxisome proliferator-activated receptors (PPARs) in the heart,” Molecular Endocrinology, vol. 24, no. 6, pp. 1111–1119, 2010.
[25]  B. Staels, W. Koenig, A. Habib et al., “Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARγ activators,” Nature, vol. 393, no. 6687, pp. 790–793, 1998.
[26]  P. Delerive, K. de Bosscher, W. V. Berghe, J.-C. Fruchart, G. Haegeman, and B. Staels, “DNA binding-independent induction of IκBα gene transcription by PPARα,” Molecular Endocrinology, vol. 16, no. 5, pp. 1029–1039, 2002.
[27]  C. Dreyer, G. Krey, H. Keller, F. Givel, G. Helftenbein, and W. Wahli, “Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors,” Cell, vol. 68, no. 5, pp. 879–887, 1992.
[28]  Y. Rival, N. Benéteau, T. Taillandier et al., “PPARα and PPAR activators inhibit cytokine-induced nuclear translocation of NF-κB and expression of VCAM-1 in EAhy926 endothelial cells,” European Journal of Pharmacology, vol. 435, no. 2-3, pp. 143–151, 2002.
[29]  C. H. Lee, A. Chawla, N. Urbiztondo, D. Liao, W. A. Boisvert, and R. M. Evans, “Transcriptional repression of atherogenic inflammation: modulation by PPARδ,” Science, vol. 302, no. 5644, pp. 453–457, 2003.
[30]  L. Fajas, D. Auboeuf, E. Raspé et al., “The organization, promoter analysis, and expression of the human PPARγ gene,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18779–18789, 1997.
[31]  M. E. Greene, B. Blumberg, O. W. McBride et al., “Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping,” Gene Expression, vol. 4, no. 4-5, pp. 281–299, 1995.
[32]  T. M. Willson, M. H. Lambert, and S. A. Kliewer, “Peroxisome proliferator-activated receptor γ and metabolic disease,” Annual Review of Biochemistry, vol. 70, pp. 341–367, 2001.
[33]  M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998.
[34]  S. G. Harris and R. P. Phipps, “The nuclear receptor PPAR gamma is expressed by mouse T lymphocytes and PPAR gamma agonists induce apoptosis,” European Journal of Immunology, vol. 31, no. 4, pp. 1098–1105, 2001.
[35]  R. B. Clark, “The role of PPARs in inflammation and immunity,” Journal of Leukocyte Biology, vol. 71, no. 3, pp. 388–400, 2002.
[36]  P. Tontonoz, E. Hu, and B. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994.
[37]  Y. Barak, M. C. Nelson, E. S. Ong et al., “PPARγ is required for placental, cardiac, and adipose tissue development,” Molecular Cell, vol. 4, no. 4, pp. 585–595, 1999.
[38]  J. M. Lehmann, L. B. Moore, T. A. Smith-Oliver, W. O. Wilkison, T. M. Willson, and S. A. Kliewer, “An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ),” Journal of Biological Chemistry, vol. 270, no. 22, pp. 12953–12956, 1995.
[39]  L. A. Moraes, L. Piqueras, and D. Bishop-Bailey, “Peroxisome proliferator-activated receptors and inflammation,” Pharmacology and Therapeutics, vol. 110, no. 3, pp. 371–385, 2006.
[40]  J. U. Scher and M. H. Pillinger, “15d-PGJ2: the anti-inflammatory prostaglandin?” Clinical Immunology, vol. 114, no. 2, pp. 100–109, 2005.
[41]  P. Delerive, K. de Bosscher, S. Besnard et al., “Peroxisome proliferator-activated receptor α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1,” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32048–32054, 1999.
[42]  S. W. Chung, B. Y. Kang, S. H. Kim, et al., “Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-γ and nuclear factor-κB,” Journal of Biological Chemistry, vol. 275, no. 42, pp. 32681–32687, 2000.
[43]  B. Zingarelli, M. Sheehan, P. W. Hake, M. O'Connor, A. Denenberg, and J. A. Cook, “Peroxisome proliferator activator receptor-γ ligands, 15-deoxy-Δ12,14-prostaglandin j2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways,” Journal of Immunology, vol. 171, no. 12, pp. 6827–6837, 2003.
[44]  D. Kelly, J. I. Campbell, T. P. King, et al., “Commensal anaerobic gut bacteria a ttenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA,” Nature Immunology, vol. 5, pp. 104–112, 2004.
[45]  T. Syrovets, A. Schule, M. Jendrach, B. Buchele, and T. Simmet, “Ciglitazone inhibits plasmininduced proinflammatory monocyte activation via modulation of p38 MAP kinase activity,” Thrombosis and Haemostasis, vol. 88, pp. 274–281, 2002.
[46]  M. Li, G. Pascual, and C. K. Glass, “Peroxisome proliferator-activated receptor γ-dependent repression of the inducible nitric oxide synthase gene,” Molecular and Cellular Biology, vol. 20, no. 13, pp. 4699–4707, 2000.
[47]  S. J. Bensinger and P. Tontonoz, “Integration of metabolism and inflammation by lipid-activated nuclear receptors,” Nature, vol. 454, no. 7203, pp. 470–477, 2008.
[48]  N. Marx, G. Sukhova, C. Murphy, P. Libby, and J. Plutzky, “Macrophages in human atheroma contain PPARγ: differentiation-dependent peroxisomal proliferator-activated receptor γ (PPARγ) expression and reduction of MMP-9 activity through PPARγ activation in mononuclear phagocytes in vitro,” American Journal of Pathology, vol. 153, no. 1, pp. 17–23, 1998.
[49]  N. Marx, “Peroxisome proliferator-activated receptor gamma and atherosclerosis,” Current Hypertension Reports, vol. 4, no. 1, pp. 71–77, 2002.
[50]  G. Chinetti, J. C. Fruchart, and B. Staels, “Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation,” Inflammation Research, vol. 49, no. 10, pp. 497–505, 2000.
[51]  C. Duval, G. Chinetti, F. Trottein, J. C. Fruchart, and B. Staels, “The role of PPARs in atherosclerosis,” Trends in Molecular Medicine, vol. 8, no. 9, pp. 422–430, 2002.
[52]  R. B. Clark, “The role of PPARs in inflammation and immunity,” Journal of Leukocyte Biology, vol. 71, no. 3, pp. 388–400, 2002.
[53]  M. Ricote, J. Huang, L. Fajas et al., “Expression of the peroxisome proliferator-activated receptor γ (PPARγ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7614–7619, 1998.
[54]  G. Chinetti, S. Griglio, M. Antonucci et al., “Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages,” Journal of Biological Chemistry, vol. 273, no. 40, pp. 25573–25580, 1998.
[55]  M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998.
[56]  A. F. Valledor and M. Ricote, “Nuclear receptor signaling in macrophages,” Biochemical Pharmacology, vol. 67, no. 2, pp. 201–212, 2004.
[57]  Y. Kawahito, M. Kondo, Y. Tsubouchi et al., “15-deoxy-Δ12,14-PGJ2 induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats,” Journal of Clinical Investigation, vol. 106, no. 2, pp. 189–197, 2000.
[58]  H. Fahmi, J. A. di Battista, J. P. Pelletier, F. Mineau, P. Ranger, and J. Martel-Pelletier, “Peroxisome proliferator-activated receptor γ activators inhibit interleukin-1β-induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes,” Arthritis and Rheumatism, vol. 44, no. 3, pp. 595–607, 2001.
[59]  K. Bordji, J.-P. Grillasca, J.-N. Gouze et al., “Evidence for the presence of peroxisome proliferator-activated receptor (PPAR) α and γ and retinoid Z receptor in cartilage. PPArγ activation modulates the effects of interleukin-1β on rat chondrocytes,” Journal of Biological Chemistry, vol. 275, no. 16, pp. 12243–12250, 2000.
[60]  A. Nakajima, K. Wada, H. Miki et al., “Endogenous PPARγ mediates anti-inflammatory activity in murine ischemia-reperfusion injury,” Gastroenterology, vol. 120, no. 2, pp. 460–469, 2001.
[61]  C. G. Su and J. D. Lewis, “Antineoplastic and anti-inflammatory effects of PPAR ligands in colitis,” Gastroenterology, vol. 121, no. 4, pp. 1019–1021, 2001.
[62]  C. G. Su, X. Wen, S. T. Bailey et al., “A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response,” Journal of Clinical Investigation, vol. 104, no. 4, pp. 383–389, 1999.
[63]  K. Wada, A. Nakajima, and R. S. Blumberg, “PPARγ and inflammatory bowel disease: a new therapeutic target for ulcerative colitis and Crohn's disease,” Trends in Molecular Medicine, vol. 7, no. 8, pp. 329–331, 2001.
[64]  C. K. Combs, D. E. Johnson, J. C. Karlo, S. B. Cannady, and G. E. Landreth, “Inflammatory mechanisms in Alzheimer's disease: inhibition of β- amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists,” Journal of Neuroscience, vol. 20, no. 2, pp. 558–567, 2000.
[65]  M. T. Heneka, T. Klockgether, and D. L. Feinstein, “Peroxisome proliferator-activated receptor-γ ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo,” Journal of Neuroscience, vol. 20, no. 18, pp. 6862–6867, 2000.
[66]  G. E. Landreth and M. T. Heneka, “Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer's disease,” Neurobiology of Aging, vol. 22, no. 6, pp. 937–944, 2001.
[67]  C. M. Reilly, J. C. Oates, J. A. Cook, J. D. Morrow, P. V. Halushka, and G. S. Gilkeson, “Inhibition of mesangial cell nitric oxide in MRL/lpr mice by prostaglandin J2 and proliferator activation receptor-γ agonists,” Journal of Immunology, vol. 164, no. 3, pp. 1498–1504, 2000.
[68]  C. M. Reilly, J. C. Oates, J. Sudian, M. B. Crosby, P. V. Halushka, and G. S. Gilkeson, “Prostaglandin J2 inhibition of mesangial cell iNOS expression,” Clinical Immunology, vol. 98, no. 3, pp. 337–345, 2001.
[69]  M. L. Higuchi, L. A. Benvenuti, M. M. Reis, and M. Metzger, “Pathophysiology of the heart in Chagas' disease: current status and new developments,” Cardiovascular Research, vol. 60, no. 1, pp. 96–107, 2003.
[70]  M. M. Chan, K. W. Evans, A. R. Moore, and D. Fong, “Peroxisome proliferator-activated receptor (PPAR): balance for survival in parasitic infections,” Journal of Biomedicine & Biotechnology, vol. 2010, Article ID 828951, 2010.
[71]  F. Nagajyothi, M. S. Desruisseaux, N. Thiruvur et al., “Trypanosoma cruzi Infection of cultured adipocytes results in an inflammatory phenotype,” Obesity, vol. 16, no. 9, pp. 1992–1997, 2008.
[72]  W. F. Rodrigues, C. B. Miguel, J. E. Chica, and M. H. Napimoga, “15d-PGJ2 modulates acute immune responses to Trypanosoma cruzi infection,” Memorias do Instituto Oswaldo Cruz, vol. 105, no. 2, pp. 137–143, 2010.
[73]  A. Gallardo-Soler, C. Gómez-Nieto, M. L. Campo et al., “Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-γ/δ-mediated effect that links lipid metabolism and immunity,” Molecular Endocrinology, vol. 22, no. 6, pp. 1394–1402, 2008.
[74]  E. Hovsepian, F. Penas, and N. B. Goren, “15-deoxy-Δ12,14 prostaglandin GJ2 but not rosiglitazone regulates metalloproteinase 9, NOS-2, and cyclooxygenase 2 expression and functions by peroxisome proliferatoryactivated receptor γ-dependent and-independent mechanisms in cardiac cells,” Shock, vol. 34, no. 1, pp. 60–67, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133