全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

芒果苷改善高果糖所致HepG2细胞内甘油三酯沉积机制研究

, PP. 2022-2026

Keywords: 芒果苷,果糖,甘油三酯,ChREBP,LPK,DGAT-

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的研究芒果苷改善高果糖诱导的HepG2细胞内甘油三酯沉积的可能机制。方法低糖(1g/L葡萄糖)条件下培养的HepG2细胞分为对照组(1g/L葡萄糖,无果糖)、果糖组(1g/L葡萄糖+30mmol/L果糖)、果糖+芒果苷组(同时加入葡萄糖浓度1g/L+30mmol/L果糖+不同剂量的芒果苷,使其药物终浓度分别为6.25、12.5、25、50μmol/L),药物干预24h之后,油红O染色观察细胞内脂滴的沉积情况,酶法测定细胞内甘油三酯(TG)的含量,Real-timePCR检测碳水化合物反应元件结合蛋白(ChREBP)、固醇调节元件结合蛋白1c(SREBP-1c)、肝型丙酮酸激酶(LPK)、二酯酰甘油酰基转移酶2(DGAT-2)mRNA表达的变化。结果油红O染色结果显示,与对照组相比,果糖组的HepG2细胞脂滴显著增多,细胞内TG含量也明显升高(P<0.05)。与果糖组对比,低剂量的芒果苷对果糖导致的细胞内脂滴的沉积无影响,较高剂量的芒果苷(25μmol/L和50μmol/L)使细胞内的脂滴数量明显减少,细胞内TG含量显著降低(P<0.05),以50μmol/L的芒果苷干预效果最好。Real-timePCR结果显示,与对照组相比,果糖组HepG2细胞ChREBP、SREBP-1c、LPK、DGAT-2mRNA明显升高,50μmol/L芒果苷能够下调HepG2细胞ChREBP、LPK、DGAT-2mRNA的高表达(P<0.05),但对SREBP-1cmRNA表达影响不明显。结论芒果苷能够改善高果糖诱导的HepG2细胞内TG的沉积,可能与抑制脂质合成相关基因ChREBP、LPK、DGAT-2mRNA的表达密切相关。

References

[1]  Liu L, Yang M, Lin X, et al. Modulation of hepatic sterol regulatory element-binding protein-1c-mediated gene expression contributes to Salacia oblonga root-elicited improvement of fructose-induced fatty liver in rats[J]. J Ethnopharmacol, 2013, 150(3): 1045-1052. [2]Li Y, Huang T H, Yamahara J. Salacia root, a unique Ayurvedic medicine, meets multiple targets in diabetes and obesity[J]. Life Sci, 2008, 82(21/22): 1045-1049. [3]Yoshikawa M, Shimoda H, Nishida N, et al. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats [J]. J Nutr, 2002, 132(7): 1819-1824. [4]Xing X, Li D, Chen D, et al. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A: diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver [J]. Toxicol Appl Pharmacol, 2014, 280(2): 207-215. [5]Denechaud P D, Bossard P, Lobaccaro J M, et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver[J]. J Clin Invest, 2008, 118(3): 956-964. [6]Flowers M T, Miyazaki M, Liu X, et al. Probing the role of stearoyl-CoA desaturase-1 in hepatic insulin resistance[J]. J Clin Invest, 2006, 116(6): 1478-1481. [7]Foufelle F, Ferre P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c [J]. Biochem J, 2002, 366(Pt 2): 377-391. [8]Tappy L, Le K A. Metabolic effects of fructose and the worldwide increase in obesity [J]. Physiol Rev, 2010, 90(1): 23-46. [9]Nagata R, Nishio Y, Sekine O, et al. Single nucleotide polymorphism (-468 Gly to A) at the promoter region of SREBP-1c associates with genetic defect of fructose-induced hepatic lipogenesis [J]. J Biol Chem, 2004, 279(28): 29031-29042. [10]Shimomura I, Bashmakov Y, Horton J D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus [J]. J Biol Chem, 1999, 274(42): 30028-30032. [11]Mori T, Kondo H, Hase T, et al. Dietary phospholipids ameliorate fructose-induced hepatic lipid and metabolic abnormalities in rats [J]. J Nutr, 2011, 141(11): 2003-2009. [12]Guo F, Huang C, Liao X, et al. Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters[J]. Mol Nutr Food Res, 2011, 55(12): 1809-1818. [13]Cases S, Stone S J, Zhou P, et al. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members [J]. J Biol Chem, 2001, 276(42): 38870-38876. [14]Wakimoto K, Chiba H, Michibata H, et al. A novel diacylglycerol acyltransferase (DGAT2) is decreased in human psoriatic skin and increased in diabetic mice[J]. Biochem Biophys Res Commun, 2003, 310(2): 296-302.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133