全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双源双能量CT心肌灌注扫描的单能量成像对线束硬化伪影的校正研究

, PP. 1662-1667

Keywords: 双源双能量CT心肌灌注扫描,单能量成像,线束硬化伪影,图像质量

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的观察双能量CT心肌灌注成像中线束硬化伪影(beam-hardening,BH)的好发部位,比较不同单能量成像对线束硬化伪影的校正效果和图像质量。方法对84例需行心脏CT增强检查的拟诊或确诊冠心病患者进行双源双能量CT(100kVp/Sn140kVp)心肌灌注扫描,特殊软件后处理得到心肌碘分布图和65、75、85、95、105keV单能量图像,以自动生成的M图像(平均加权混合120kV)为对照,观察线束硬化伪影的发生部位和数量,根据心肌碘含量、CT值、图像背景噪声(SD)、信噪比(SNR)、对比噪声比(CNR)和图像质量评分综合评价心肌单能量成像价值。结果65keV单能量图像伪影计数为274,随着能量增加,伪影计数逐渐减少(P<0.05);左心室的基底段伪影最明显(36.5%,100/274),其次为间隔壁(25.91%)、上腔静脉旁段(24.82%)、后壁(12.77%)(P<0.05);心肌伪影区碘含量(-2.37±0.84)mg/g低于非伪影区碘含量(3.5±0.92)mg/g(t=-19.36,P<0.01);85keV的非伪影心肌CT值(93.52±18.52)HU与120kV[(96.06±16.32)HU]最接近,CT值的组间差异有统计学意义(P<0.01);85keV的SD最小(12.98±3.16,P<0.01),非伪影心肌的SNR:75keV(6.89±1.79)与85keV(6.5±1.7)较高,二者无明显差别(t=1.5,P=0.14),CNR:75keV最高(18.79±6.76,P<0.01),85keV(15.4±5.67)与65keV(15.53±4.56)之间无明显差别(t=0.27,P=0.79);图像质量评分:85keV最高,两名诊断医师对六组图像进行评分,结果高度一致(Kappa=0.79,P<0.01)。结论左心室的基底段、间隔壁和上腔静脉旁易出现线束硬化伪影;正常心肌密度在85keV与混合能量120kV最接近,85keV能在最有效纠正线束硬化伪影的同时保证较好的图像质量。

References

[1]  Schwarz F, Ruzsics B, Schoepf U J, et al. Dual-energy CT of the heart--principles and protocols[J]. Eur J Radiol, 2008, 68(3): 423-433. [2]齐燕, 齐双, 欧陕兴. 双源CT在心脏成像中的应用研究[J]. 心脏杂志, 2010, 22(2): 302-304. [3]Peng J, Zhang L J, Schoepf U, et al. Acute myocardial infarct detection with dual energy CT: correlation with single photon emission computed tomography myocardial scintigraphy in a canine model[J]. Acta Radiol, 2013, 54(3): 259-266. [4]Secchi F, De-Cecco C N, Spearman J V, et al. Monoenergetic extrapolation of cardiac dual energy CT for artifact reduction[J]. Acta Radiol, 2015, 56(4): 413-418. [5]Yamada M, Jinzaki M, Kuribayashi S, et al. Beam-hardening correction for virtual monochromatic imaging of myocardial perfusion ?via? fast-switching dual-kVp 64-slice computed tomography: a pilot study using a human heart specimen[J]. Circ J, 2012, 76(7): 1799-1801. [6]王未, 周长圣, 方晓?, 等. 第二代双源双能量CT心肌灌注成像的初步应用[J]. 放射学实践, 2014, 29(9): 993-997. [7]Mangold S, Gatidis S, Luz O, et al. Single-source dual-energy computed tomography: use of monoenergetic extrapolation for a reduction of metal artifacts[J]. Invest Radiol, 2014, 49(12): 788-793. [8]Wu X, Langan D A, Xu D, et al. Monocromatic CT image representation via fast switching dual kVp[J]. Proc SPIE, 2009, 7258: 725845. [9]Guggenberger R, Winklhofer S, Osterhoff G, et al. Metallic artifact reduction with monoenergetic dual-energy CT: systematic ?ex vivo? evaluation of posterior spinal fusion implants from various vendors and different spine levels[J]. Eur Radiol, 2012, 22(11): 2357-2364. [10]Meinel F G, Bischoff B, Zhang Q, et al. Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol[J]. Invest Radiol, 2012, 47(7): 406-414. [11]Okayama S, Seno A, Soeda T, et al. Optimization of energy level for coronary angiography with dual-energy and dual-source computed tomography[J]. Int J Cardiovasc Imaging, 2012, 28(4): 901-909. [12]Hemmingsson A, Jung B, Ytterbergh C. Dual energy computed tomography: simulated monoenergetic and material-selective imaging[J]. J Comput Assist Tomogr, 1986, 10(3): 490-499. [13]Vliegenthart R, Pelgrim G J, Ebersberger U, et al. Dual-energy CT of the heart[J]. AJR Am J Roentgenol, 2012, 199(5 Suppl): S54-S63. [14]Rodriguez-Granillo G A, Rosales M A, Degrossi E, et al. Signal density of left ventricular myocardial segments and impact of beam hardening artifact: implication for myocardial perfusion assessment by multidetector CT coronary angiography[J]. Int J Cardiovasc Imaging, 2010, 26(3): 345-354. [15]Koonce J D, Vliegenthart R, Schoepf U J, et al. Accuracy of dual-energy computed tomography for the measurement of iodine concentration using cardiac CT protocols: validation in a phantom model[J]. Eur Radiol, 2014, 24(2): 512-518. [16]任庆国, 滑炎卿, 李剑颖. CT能谱成像的基本原理及临床应用[J]. 国际医学放射学杂志, 2011, 34(6): 559-563. [17]Stanton C L, Haramati L B, Berko N S, et al. Normal myocardial perfusion on 64-detector resting cardiac CT[J]. J Cardiovasc Comput Tomogr, 2011, 5(1): 52-60. [18]Wang X, Meier D, Taguchi K, et al. Material separation in x-ray CT with energy resolved photon-counting detectors[J]. Med Phys, 2011, 38(3): 1534-1546. [19]Lewis M, Reid K, Toms A P. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements[J]. Skeletal Radiol, 2013, 42(2): 275-282. ?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133