全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

模拟空间环境X射线和微重力对大鼠骨丢失的影响

, PP. 1232-1236

Keywords: 骨丢失,模拟微重力,X射线辐照,骨小梁参数

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的探讨辐照和微重力对于骨代谢是否存在交互作用。方法2月龄雄性Wistar大鼠分为正常对照组、X射线辐照组(X-ray组)、尾吊模型组(HLS组)及尾吊结合X射线辐照组(HLS+X-ray组)。分别对HLS组和HLS+X-ray组进行4GyX射线全身辐照,对HLS+X-ray组进行尾吊实验来模拟空间环境下辐射和微重力的条件,检测骨密度、骨小梁的数目、骨小梁的分离程度、骨小梁的厚度、骨体积分数、结构模型指数等参数并检测了骨碱性磷酸酶(ALP)、酒石酸酸性磷酸酶(TRAP)、骨钙素(OCN)的及骨调节基因Rankl、Runx2、Nfatcl的表达变化,研究两种因素所引起的骨丢失是否有相应的交互作用。结果尾吊和X射线辐照在骨丢失方面引起了显著的变化,同正常对照组相比,HLS组和X-ray组的骨密度、骨小梁的数目、骨小梁的厚度、骨体积分数均表现为降低趋势(P<0.05),HE染色显示HLS组、X-ray组和HLS+X-ray组中都出现骨小梁数量减少等特征,说明各个模型组都存在骨丢失现象,以HLS+X-ray组最为明显(P<0.05)。Rankl、Nfatcl以及酒石酸酸性磷酸酶的表达在HLS组、X-ray组及HLS+X-ray组均上升(P<0.05)。碱性?酸酶和骨钙素的表达在HLS组、X-ray组及HLS+X-ray组均有所下降(P<0.05)。而作为成骨细胞特异性表达的Runx2基因在HLS组和X-ray组却没有任何改变,在HLS+X-rays组发生了显著的下调(P<0.05)。结论尾吊和X射线双因素能够引起骨密度更大的丢失,两者存在交互作用,破坏程度会更加严重。

References

[1]  Blaber E A, Dvorochklin N, Lee C, et al. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21[J]. PLoS One, 2013, 8(4): e61372. [2]Nagaraja M P, Risin D. The current state of bone loss research: data from spceflight and microgravity simulators[J]. J Cell Biochem, 2013, 114(5): 1001-1008. [3]Hu L F, Qian A R, Wang S M, et al. Inhibitory effect of simulated microgravity on differentiating preosteoblasts[J]. Adv Space Res, 2013, 51(1): 107-114. [4]Stein T P. Weight, muscle and bone loss during space flight: another perspective[J]. Eur J Appl Physiol, 2013, 113(9): 2171-2181. [5]Arfat Y, Xiao W Z, Iftihar S, et al. Physiological effects of microgravity on bone cells[J]. Calcif Tissue Int, 2014, 94(6): 569-579. [6]Wang H, Ji B, Liu X S, et al. Analysis of microstructural and mechanical alterations of trabecular bone in a simulated three-dimensional remodeling process[J]. J Biomech, 2012, 45(14): 2417-2425. [7]Rana T, Schultz M A, Freeman M L, et al. Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL[J]. Free Radic Biol Med, 2012, 53(12): 2298-2307. [8]LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration space flight[J]. J Musculoskelet Neuronal Interact, 2000, 1(2): 157-160. [9]Azzam E I, de-Toledo S M, Little J B. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to nonirradiated cells[J]. Proc Natl Acad Sci U S A, 2001, 98(2): 473-478. [10]Morey-Holton E R, Globus R K. Hindlimb unloading rodent model: technical aspects [J]. J Appl Physiol (1985), 2002, 92(4): 1367-1377. [11]To T T, Witten P E, Renn J, et al. Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model [J]. Development, 2012, 139(1): 141-150. [12]O’Brien C A, Nakashima T, Takayanagi H. Osteocyte control of osteoclastogenesis [J]. Bone, 2013, 54(2): 258-263. [13]Caetano-Lopes J, Canhao H, Fonseca J E. Osteoblasts and bone formation [J]. Acta Reumatol Port, 2007, 32(2): 103-110. [14]? Gallagher J C, Sai AJ. Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis [J]. Maturitas, 2010, 65(4): 301-307. [15]Bandstra E R, Pecaut M J, Anderson E R, et al. Long-term dose response of trabecular bone in mice to proton radiation [J]. Radiat Res, 2008, 169(6): 607-614. [16]Hamilton S A, Pecaut M J, Gridley D S, et al. A murine model for bone loss from therapeutic and space-relevant sources of radiation[J]. J Appl Physiol (1985), 2006, 101(3): 789-793. [17]Kondo H, Yumoto K, Alwood J S, et al. Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse[J]. J Appl Physiol (1985), 2010, 108(1): 152-161. [18]Smith S M, Wastney M E, O’Brien K O, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station [J]. J Bone Miner Res, 2005, 20(2): 208-218.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133