全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

移植用小鼠胶质前体细胞的培养及其移植后形态和功能初探

, PP. 939-944

Keywords: 神经干细胞,胶质前体细胞,星形胶质细胞,钙信号,移植

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的完善体外分离培养移植用胶质前体细胞的方法,并运用双光子显微镜在活体动物水平,对小鼠大脑皮层移植的胶质细胞进行单细胞水平的在体功能研究。方法体外分离培养小鼠胚胎神经干细胞,并将其诱导为胶质前体细胞及星形胶质细胞。分别用Nestin、A2B5以及GFAP对体外培养的神经干细胞、胶质前体细胞以及星形胶质细胞进行形态学鉴定。体外给予ATP及毒胡萝卜素(Thapsigargin),对体外分化的星形胶质细胞进行功能学鉴定。将以上诱导得到的胶质前体细胞移植入成年小鼠大脑皮层,并在移植12周后对其进行形态学观察。另外,应用双光子活体钙成像技术,观察移植胶质细胞对ATP刺激的反应。结果①体外诱导神经干细胞成为胶质前体细胞(A2B5阳性)的比率达到(87.4±3.4)%,继续将其诱导为成熟星形胶质细胞(GFAP阳性)的比率达到(83.4±3.3)%。②体外诱导而来的星形胶质细胞可对ATP及毒胡萝卜素产生钙反应。③移植进入成年小鼠皮层的胶质前体细胞,在移植12周后仍可存活,并可分化为成熟的星形胶质细胞。④双光子活体钙成像实验证实,ATP可诱导活体小鼠皮层内移植细胞产生钙信号。结论神经干细胞来源的胶质前体细胞在移植进入成年小鼠皮层内可分化为成熟星形胶质细胞,并至少存活12周。另外,胶质前体细胞在移植4周后,便可在活体动物大脑皮层内具备功能活动。

References

[1]  Abulrob A, Brunette E, Slinn J, et al. Dynamic analysis of the blood-brain barrier disruption in experimental stroke using time domain in vivo fluorescence imaging[J]. Mol Imaging, 2008, 7(6): 248-262. [2]Barreto G, White R E, Ouyang Y, et al. Astrocytes: targets for neuroprotection in stroke [J]. Cent Nerv Syst Agents Med Chem, 2011, 11(2): 164-173. [3]Jiang P, Chen C, Wang R, et al. hESC-derived Olig2+ progenitors generate a subtype of astroglia with protective effects against ischaemic brain injury [J]. Nat Commun, 2013, 4: 2196. [4]Lepore A C, Rauck B, Dejea C, et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease[J]. Nat Neurosci, 2008, 11(11): 1294-1301. [5]Shao W, Zhang S Z, Tang M, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin[J]. Nature, 2013, 494(7435): 90-94. [6]Bradbury E J, Kershaw T R, Marchbanks R M, et al. Astrocyte transplants alleviate lesion induced memory deficits independently of cholinergic recovery[J]. Neuroscience, 1995, 65(4): 955-972. [7]Han X, Chen M, Wang F, et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice[J]. Cell Stem Cell, 2013, 12(3): 342-353. [8]郑向红, 许颖. 神经胶质细胞作用的研究进展[J]. 海峡药学, 2013, 25(3): 210-213. [9]Liu Y, Li C. Firing rate propagation through neuronal-astrocytic network[J]. IEEE Trans Neural Netw Learn Syst, 2013, 24(5): 789-799. [10]Santello M, Volterra A. Synaptic modulation by astrocytes via Ca2+-dependent glutamate release[J]. Neuroscience, 2009, 158(1): 253-259. [11]Orellana J A, Martinez A D, Retamal M A. Gap junction channels and hemichannels in the CNS: regulation by signaling molecules[J]. Neuropharmacology, 2013, 75: 567-582. [12]Tian G, Kong Q, Lai L, et al. Increased expression of cholesterol 24S-hydroxylase results in disruption of glial glutamate transporter EAAT2 association with lipid rafts: a potential role in Alzheimer’s disease[J]. J Neurochem, 2010, 113(4): 978-989. [13]Tadimalla A, Belmont P J, Thuerauf D J, et al. Mesencephalic astrocyte-derived neurotrophic factor is an ischemia-inducible secreted endoplasmic reticulum stress response protein in the heart[J]. Circ Res, 2008, 103(11): 1249-1258. [14]Chu L F, Wang W T, Ghanta V K, et al. Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-κB signaling pathway[J]. Brain Res, 2008, 1239: 24-35. [15]Greenberg M L, Weinger J G, Matheu M P, et al. Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis[J]. Proc Natl Acad Sci U S A, 2014, 111(22): E2349-E2355. [16]Barberi T, Klivenyi P, Calingasan N Y, et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice[J]. Nat Biotechnol, 2003, 21(10): 1200-1207. [17]Krencik R, Weick J P, Liu Y, et al. Specification of transplantable astroglial subtypes from human pluripotent stem cells[J]. Nat Biotechnol, 2011, 29(6): 528-534.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133