全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

1800MHz射频电磁场通过瞬时受体电位C通道影响原代大鼠皮层神经元突起生长

, PP. 772-777

Keywords: 射频电磁场,瞬时受体电位C,皮层神经元突起,Ca+

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的研究1800MHz射频电磁场(radiofrequencyelectromagneticfield,RF-EMF)对原代培养皮层神经元突起生长的影响,并通过瞬时受体电位C通道介导的钙内流,探讨RF-EMF对突起生长影响的机制。方法将原代培养皮层神经元(primarilyculturedcorticalneurons,PCCNs)用随机数表法分为4组:假暴露(Sham)、Sham+SKF-96365、辐照组(RF)和RF+SKF-96365组。使用sXc-1800辐照系统,1800MHz频率talk模式,5min开10min关,比吸收率为4W/kg,辐照组辐照时间分别为12、24h和48h。SKF-96365干预处理是在维持培养基中加入SKF-96365(5μmol/L)后与假暴露组、RF组进行相同的处理。辐照结束后即刻进行以下指标检测:①细胞活力(CCK-8法)和LDH释放;②TRPC1、TRPC3蛋白表达(Westernblot);③钙库操纵性钙内流变化(store-operatedcalciumentry,SOCE)(激光共聚焦显微镜);④神经元突起总长度、初级突起数和分支数(Tuj-1免疫荧光染色)。结果RF组细胞活力和LDH释放与相应Sham组相比差异均无统计学意义(P>0.05)。与Sham组比较,RF组辐照24h后,TRPC1和TRPC3蛋白表达分别降低24%和23%,SOCE下降54%,辐照48h引起PCCNs突起总长度、初级突起数和分支数分别下降20%、12%、31%,以上变化均有统计学意义(P<0.05)。Sham+SKF-96365组SOCE下降24%,突起总长度、初级突起数、分支数分别下降10%、12%、24%,与Sham组比较均有统计学意义(P<0.05),而RF+SKF-96365组SOCE和突起总长度、突起数、分支数的变化与RF组比较差异无统计学意义(P>0.05)。结论RF-EMF可引起原代皮层神经元突起长度、初级突起数和分支数减少,该效应可能与TRPC1和TRPC3通道蛋白表达降低和TRPC通道介导的钙信号减弱有关。

References

[1]  ICT Data and Statistics. The world in 2011: ICT facts and figures [EB/OL]. (2012-02-28) [2014-12-14]. http: //www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf. [2]Telecommunication Development Sector. Exploring the Value and Economic Valuation of SpEctrum. [EB/OL]. (2012-04-10)[2014-12-14]. http: //www. itu. int/ITU-D/treg/broadband/ITU-BB-Reports_SpectrumValue. pdf#search=ALL%283G%20lte%202G%20%29. [3]Chen C H, Ma Q L, Liu C, et al. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells[J]. Sci Rep, 2014, 4: 5103. [4]Heo D K, Chung W Y, Park H W, et al. Opposite regulatory effects of TRPC1 and TRPC5 on neurite outgrowth in PC12 cells[J]. Cell Signal, 2012, 24(4): 899-906. [5]Shapovalov G, Lehen’kyi V, Skryma R, et al. TRP channels in cell survival and cell death in normal and transformed cells[J]. Cell Calcium, 2011, 50(3): 295-302. [6]Reboreda A, Jimenez-Diaz L, Navarro-Lopez J D. TRP channels and neural persistent activity[J]. Adv Exp Med Biol, 2011, 704: 595-613. [7]Clapham D E, Runnels L W, Strubing C. The TRP ion channel family[J]. Nat Rev, 2001, 2(6): 387-396. [8]Xu S, Zhou Z, Zhang L, et al. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons[J]. Brain Res, 2010, 1311: 189-196. [9]Radio N M, Mundy W R. Developmental neurotoxicity testing ?in vitro?: models for assessing chemical effects on neurite outgrowth[J]. Neurotoxicology, 2008, 29(3): 361-376. [10]Qiu C, Fratiglioni L, Karp A, et al. Occupational exposure to electromagnetic fields and risk of Alzheimer’s disease[J]. Epidemiology, 2004, 15(6): 687-694. [11]Shirakawa H, Sakimoto S, Nakao K, et al. Transient receptor potential canonical 3 (TRPC3) mediates thrombin-induced astrocyte activation and upregulates its own expression in cortical astrocytes[J]. J Neurosci, 2010, 30(39): 13116-13129. [12]Halassa M M, Fellin T, Haydon P G. The tripartite synapse: roles for gliotransmission in health and disease[J]. Trends Mol Med, 2007, 13(2): 54-63. [13]Del-Vecchio G, Giuliani A, Fernandez M, et al. Continuous exposure to 900MHz GSM-modulated EMF alters morphological maturation of neural cells[J]. Neurosci Lett, 2009, 455(3): 173-177. [14]Li H S, Xu X Z, Montell C. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF[J]. Neuron, 1999, 24(1): 261-273. [15]Wu X, Zagranichnaya T K, Gurda G T, et al. A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells[J]. J Biol Chem, 2004, 279(42): 43392-43402. [16]Li M, Chen C, Zhou Z, et al. A TRPC1-mediated increase in store-operated Ca?2+ entry is required for the proliferation of adult hippocampal neural progenitor cells[J]. Cell Calcium, 2012, 51(6): 486-496. [17]Moran M M, Xu H, Clapham D E. TRP ion channels in the nervous system[J]. Curr Opin Neurobiol, 2004, 14(3): 362-369. [18]Pedersen S F, Owsianik G, Nilius B. TRP channels: An overview[J]. Cell Calcium, 2005, 38(3/4): 233-252. [19]Minke B. TRP channels and Ca?2+ signaling[J]. Cell Calcium, 2006, 40(3): 261-275. [20]Worley P F, Zeng W, Huang G N, et al. TRPC channels as STIM1-regulated store-operated channels[J]. Cell Calcium, 2007, 42(2): 205-211.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133