Pellise F, Balague F, Rajmil L, et al. Prevalence of low back pain and its effect on health-related quality of life in adolescents[J]. Arch Pediatr Adolesc Med, 2009, 163(1): 65-71. [2]Schoenfeld A J. Adjacent segment degeneration after lumbar spinal fusion: risk factors and implications for clinical practice[J]. Spine J, 2011, 11(1): 21-23. [3]Silva-Correia J, Miranda-Goncalves V, Salgado A J, et al. Angiogenic potential of gellan-gum-based hydrogels for application in nucleus pulposus regeneration: ?in vivo? study[J]. Tissue Eng Part A, 2012 18(11/12): 1203-1212. [4]Francisco A T, Mancino R J, Bowles R D, et al. Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration[J]. Biomaterials, 2013, 34(30): 7381-7388. [5]Castillo-Diaz L A, Saiani A, Gough J E, et al. Human osteoblasts within soft peptide hydrogels promote mineralisation in vitro[J]. J Tissue Eng, 2014, 5: 2041731414539344. [6]Choi B, Kim S, Lin B, et al. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering[J]. ACS Appl Mater Interfaces, 2014, 6(22): 20110-20121. [7]Pereira T, Armada-da-Silva P A, Amorim I, et al. Effects of Human Mesenchymal Stem Cells Isolated from Wharton’s Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model[J]. Stem Cells Int, 2014, 2014: 376918. [8]McMurtrey R J. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control[J]. J Neural Eng, 2014, 11(6): 066009. [9]Chou A I, Nicoll S B. Characterization of photocrosslinked alginate hydrogels for nucleus pulposus cell encapsulation[J]. J Biomed Mater Res A, 2009, 91(1): 187-194. [10]Sasson A, Patchornik S, Eliasy R, et al. Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-experimental testing and constitutive modeling[J]. J Mech Behav Biomed Mater, 2012, 8: 143-153. [11]Mercuri J, Addington C, Pascal R 3rd, et al. Development and initial characterization of a chemically stabilized elastin-glycosaminoglycan-collagen composite shape-memory hydrogel for nucleus pulposus regeneration[J]. J Biomed Mater Res A, 2014, 102(12): 4380-4393. [12]Vinatier C, Guicheux J, Daculsi G, et al. Cartilage and bone tissue engineering using hydrogels[J]. Biomed Mater Eng, 2006, 16(4 Suppl): S107-S113. [13]Kopecek J. Hydrogel biomaterials: a smart future?[J]. Biomaterials, 2007, 28(34): 5185-5192. [14]Geng X Mo, X, Fan L, et al. Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly (ethylene glycol)-acrylate for tissue engineering application[J]. J Mater Chem, 2012, 22(48): 25130-25139. [15]Mo X, Iwata H, Matsuda S, et al. Y. Soft tissue adhesive composed of modified gelatin and polysaccharides[J]. J Biomater Sci Polym Ed, 2000, 11(4): 341-151. [16]Silva-Correia J, Correia S I, Oliveira J M, et al. Tissue engineering strategies applied in the regeneration of the human intervertebral disk[J]. Biotechnol Adv, 2013, 31(8): 1514-1531. [17]Smith L J, Gorth D J, Showalter B L, et al. ?In vitro? characterization of a stem-cell-seeded triple-interpenetrating-network hydrogel for functional regeneration of the nucleus pulposus[J]. Tissue Eng Part A, 2014, 20(13/14): 1841-1849.