全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

芒果苷联合卸负荷改善压力超负荷大鼠心室肥厚

, PP. 527-531

Keywords: 卸压力负荷,芒果苷,左心室肥厚

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的通过卸负荷及药物干预相结合建立大鼠胸骨上小切口缩窄及松解模型,探讨芒果苷对大鼠压力超负荷后卸负荷的心室肥厚转归的影响。方法选用5周龄、体质量150~180g雄性SD大鼠48只,行非人工通气下胸骨上小切口升主动脉缩窄术致大鼠左心室肥厚,利用单一去缩窄以及去缩窄联合应用芒果苷干预方法,将所有存活动物随机分为假手术组、超负荷组(升主动脉缩窄6周)、卸负荷组(升主动脉缩窄术后6周后松解4周)以及芒果苷组[缩窄术后6周后松解,松解术后以芒果苷干预4周,20mg/(kg·d).i.g],通过心肌大体标本、动物超声心动图,病理学染色比较大鼠在此过程中的心脏形态、质量,左室壁厚度及心肌病理学改变。结果与假手术组相比,超负荷组心肌左室后壁收缩期厚度(4.25±0.43)mm、舒张期厚度(2.89±0.42)mm及室间隔收缩期厚度(3.92±0.71)mm、舒张期厚度(2.59±0.49)mm显著增厚(P<0.01),心脏体积增大、心脏质量体质量比(4.44±0.77)mg/g明显升高(P<0.01)、心肌细胞排列紊乱,胞质增多,间质纤维化明显。卸负荷后左室后壁收缩期厚度(3.85±0.56)mm、舒张期厚度(2.47±0.52)mm及室间隔收缩期厚度(3.81±0.53)mm、舒张期厚度(2.51±0.54)mm有一定程度的改善,但不明显。心脏体积减小、心脏质量体质量比(3.03±0.18)mg/g降低(P<0.01)、心肌细胞体积缩小但排列紊乱,间质纤维化程度无明显减轻。芒果苷联合卸负荷干预后较单一卸负荷组左室后壁收缩期厚度(2.80±0.37)mm、舒张期厚度(1.94±0.27)mm,室间隔收缩期厚度(2.90±0.51)mm、舒张期厚度(1.89±0.38)mm及心脏质量体质量比(2.32±0.33)mg/g改善明显(P<0.01),心脏体积进一步减小,心肌细胞体积缩小且排列规则,间质纤维化程度有一定改善。结论芒果苷联合卸负荷可显著改善超负荷大鼠心室肥厚。

References

[1]  Bernardo B C, Weeks K L, Pretorius L, et al. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies[J]. Pharmacol Ther, 2010, 128(1): 191-227. [2]Xu R, Lin F, Zhang S, et al. Signal pathways involved in reverse remodeling of the hypertrophic rat heart after pressure unloading[J]. Int J Cardiol, 2010, 143(3): 414-423. [3]Wang H L, Li C Y, Zhang B, et al. Mangiferin facilitates islet regeneration and β-cell proliferation through upregulation of cell cycle and β-cell regeneration regulators[J]. Int J Mol Sci, 2014, 15(5): 9016-9035. [4]Zheng D, Hou J, Xiao Y, et al. Cardioprotective effect of mangiferin on left ventricular remodeling in rats[J]. Pharmacology, 2012, 90(1/2): 78-87. [5]马杰, 余杨, 蹇召, 等. 胸骨上小切口大鼠主动脉瓣上缩窄模型的建立[J]. 中华实验外科杂志, 2014, 31(5): 1147-1149. [6]Nakamura A, Rokosh D G, Paccanaro M, et al. LV systolic performance improves with development of hypertrophy after transverse aortic constriction in mice[J]. Am J Physiol Heart Circ Physiol, 2001, 281(3): H1104-H1112. [7]Gullace G, Demicheli G, Monte I, et al. Reclassification of echocardiography according to the appropriateness of use, function and competence-based profiles and application[J]. J Cardiovasc Echogr, 2012, 22(3): 91-98. [8]田亚强, 苏旭东, 赵家军, 等. 吡格列酮对高脂饮食SD大鼠心功能的影响[J]. 第三军医大学学报, 2011, 33(1): 65-68. [9]于学军, 何作云, 黄岚, 等. 血管紧张素(1-7)对不同模型高血压大鼠左心室结构的影响[J]. 第三军医大学学报, 2009, 31(18): 1753-1756. [10]Stansfield W E, Charles P C, Tang R H, et al. Regression of pressure-induced left ventricular hypertrophy is characterized by a distinct gene expression profile[J]. J Thorac Cardiovasc Surg, 2009, 137(1): 232-238, 238e1-238e8. [11]Leenders J J, Wijnen W J, Hiller M, et al. Regulation of cardiac gene expression by KLF15, a repressor of myocardin activity[J]. J Biol Chem, 2010, 285(35): 27449-27456. ? [12]Gong X, Zhang L, Jiang R, et al. Anti-inflammatory effects of mangiferin on sepsis-induced lung injury in mice via up-regulation of heme oxygenase-1[J]. J Nutr Biochem, 2013, 24(6): 1173-1181. [13]Prabhu S, Narayan S, Devi C S. Mechanism of protective action of mangiferin on suppression of inflammatory response and lysosomal instability in rat model of myocardial infarction[J]. Phytother Res, 2009, 23(6): 756-760. [14]Lai L, Lin L C, Lin J H, et al. Pharmacokinetic study of free mangiferin in rats by microdialysis coupled with microbore high-performance liquid chromatography and tandem mass spectrometry[J]. J Chromatogr A, 2003, 987(1/2): 367-374. [15]Hou J, Zheng D, Zhong G, et al. Mangiferin mitigates diabetic cardiomyopathy in streptozotocin-diabetic rats[J]. Can J Physiol Pharmacol, 2013, 91(9): 759-763. ?
[2]  张艳梅,柴进,阳勇,等.芒果苷上调HepG2细胞膜蛋白MRP3和核受体PXR、CPF表达[J].第三军医大学学报,2011,33(03):246.  Zhang Yanmei,Chai Jin,Yang Yong,et al.Mangiferin up-regulates expression of membrane protein MRP3 and nuclear receptors PXR and CPF in HepG2 cells[J].J Third Mil Med Univ,2011,33(06):246.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133