全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于优化SVR模型的大跨度样本疲劳寿命预测

DOI: 10.3969/j.issn.1005-3026.2015.09.023, PP. 1321-1326

Keywords: 大跨度,支持向量回归,疲劳,寿命预测,铝合金

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统方法在大跨度、小样本情况下的疲劳寿命预测准确率不高的问题,研究基于优化SVR模型的寿命预测方法.根据大跨度样本的特点,提出有效的预处理方法、SVR模型的训练方法及参数优化准则.以LY12CZ(2A12)铝合金疲劳寿命预测为实例,分析了高斯核函数、多项式核函数及多层感知核函数对SVR模型训练误差的影响.结果表明高斯核函数更适用于SVR模型的训练,并通过细菌觅食算法对核参数γ及惩罚因子C进行优化选取,LY12CZ(2A12)铝合金疲劳寿命预测结果验证了该方法的有效性.

References

[1]  孙玉兰,王茂廷.基于灰色模型GM(1,1)的疲劳寿命预测[J].科学技术与工程, 2011,11(3):560-562.(Sun Yu-lan,Wang Mao-ting.Prediction for fatigue life based on grey model GM (1,1) [J].Science Technology and Engineering,2011,11(3):560-562.)
[2]  Silva A,Dias J L,Gaspar P L,et al.Statistical models applied to service life prediction of rendered facades [J].Automation in Construction, 2013,30(1):151-160.
[3]  Xiang K L,Xiang P Y,Wu Y P.Prediction of the fatigue life of natural rubber composites by artificial neural network approaches [J].Materials & Design,2014,57(1):180-185.
[4]  Ni C C.Prediction of fatigue crack growth of 2024-t351 by grey GM (1,1) model with rolling check [J].Advanced Materials Research,2013,690(1):1779-1783.
[5]  崔建国,巩俊杰,董世良,等.基于灰色理论的飞机结构疲劳寿命预测[J].沈阳航空航天大学学报,2011,28(1):23-27.(Cui Jian-guo,Gong Jun-jie,Dong Shi-liang,et al.Fatigue life prediction of aeroplane structures based on grey theory [J].Journal of Shenyang Aerospace University,2011,28(1):23-27.)
[6]  Vapnik V N.The nature of statistical learning theory [M].Berlin:Springer-Verlag,1995:1-50.
[7]  Vapnik V,Golowich S E,Smola A.Support vector method for function approximation,regression estimation,and signal processing [J].Advances in Neural Information Processing Systems,1997,1(1):281-287.
[8]  Mahdevari S,Shahriar K,Yagiz S,et al.A support vector regression model for predicting tunnel boring machine penetration rates [J].International Journal of Rock Mechanics and Mining Sciences,2014,72(12):214-229.
[9]  Bagheripour P,Gholami A,Asoodeh M,et al.Support vector regression based determination of shear wave velocity [J].Journal of Petroleum Science and Engineering,2015,125(1):95-99.
[10]  殷之平.结构疲劳与断裂[M].西安:西北工业大学出版社,2012:35-36.(Yin Zhi-ping.Structural fatigue and fracture [M].Xi’an:Northwestern Polytechnical University Press,2012:35-36.)
[11]  杨大炼,李学军,蒋玲莉.一种细菌觅食算法的改进及其应用[J].计算机工程与应用,2012,48(13):31-34.(Yang Da-lian,Li Xue-jun,Jiang Ling-li.Improved algorithm of bacterium foraging and its application [J].Computer Engineering and Applications,2012,48(13):31-34.)
[12]  Yang D L,Li X J,Wang K,et al.Support vector machine optimization based on bacterial foraging algorithm and applied in fault diagnosis [J].Advanced Materials Research,2011,216(1):153-157.
[13]  Pham H T,Yang B S,Nguyen T T.Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine [J].Mechanical Systems and Signal Processing,2012,32(11):320-330.
[14]  邹心遥,姚若河.LSSVM在指数寿命型小子样IC寿命预测的应用[J].科学技术与工程,2011,11(24):5946- 5949.(Zou Xin-yao,Yao Ruo-he.Application of LSSVM on lifetime prediction of IC with small sample from exponential distribution [J].Science Technology and Engineering,2011,11(24):5946-5949.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133