全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

低温固相反应法制备NiFe2O4纳米粉及机理研究

DOI: 10.12068/j.issn.1005-3026.2015.08.017

Keywords: NiFe2O4, 纳米粉, 低温固相反应, 机械研磨, 煅烧温度, 机理
Key words: NiFe2O4 nanopowder low temperature solid-state reaction ball milling grinding calcination temperature mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 采用机械研磨方法制备前驱体,再将前驱体进行煅烧得到NiFe2O4纳米粉.重点研究了煅烧温度对粉体物相和形貌的影响以及固相反应过程与机理.结果表明:煅烧过程中晶粒长大活化能为12.08kJ·mol-1,主要以界面扩散为主;煅烧温度为700℃时粉体团聚严重,颗粒之间存在片状非晶态化合物,结晶度低;750℃煅烧1h得到的NiFe2O4纳米粉物相单一,粒径分布在35~85nm之间,温度过高时晶粒明显长大;机械研磨洗涤后前驱体主要由Fe2O3,NiO和NiFe2O4组成,反应产物结晶度低,反应不完全;盐颗粒的存在能抑制晶粒生长,减小产物粒径.
Abstract:The precursors ground by planetary ball milling at room temperature were calcined to obtain NiFe2O4 nanopowder. The effect of calcination temperature on the particle phase and morphology and the mechanisms of solid-state reaction were studied in detail. The results show that the activation energy of grain growth during calcination process is 12.08kJ·mol-1, indicating that the predominant mass transport mechanism is interfacial diffusion. The particles calcined at 700℃ showed strong agglomeration and low crystallinity with flaky amorphous compounds. The NiFe2O4 nanopowder calcined at 750℃ for 1h is of single phase with a particle size range of 35-85nm. The grains grew obviously when the calcination temperature increased to over 800℃. The main compositions of the precursor are Fe2O3, NiO and NiFe2O4. The low crystallinity of reaction products indicates the solid state reaction is not complete. The existence of salt particles can suppress grain growth, and thus decrease the particle size.

References

[1]  Fan H M,Yi J B,Kho K W,et al.Single-crystalline MFe2O4 nanotubes / nanorings synthesized by thermal transformation process for biological applications [J].ACS Nano,2009,3(9):2798-2808.
[2]  Pradeep A,Priyadharsini P,Chandrasekaran G.Production of single phase nano size NiFe2O4 particles using sol-gel auto combustion route by optimizing the preparation conditions [J].Materials Chemistry and Physics, 2008,112(2):572-576.
[3]  Zhang J L,Shi J X,Gong M L.Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process [J].Journal of Solid State Chemistry,2009,182(8):2135-2140.
[4]  Maaz K,Khalid W,Mumtaz A,et al.Magnetic characterization of Co1-○x○Ni○xFe2O4 (0≤x≤1) nanoparticles prepared by co-precipitation route [J].Physica:E,2009,41(4): 593-599.
[5]  Li F,Yu X H,Pan H J,et al.Syntheses of MO2 (M-Si,Ce,Sn) nanoparticles by solid-state reactions at ambient temperature [J].Solid State Sciences,2000,2(8):767-772.
[6]  张志刚,姚广春,马佳,等.低温固相反应合成NiFe2O4尖晶石纳米粉[J].东北大学学报:自然科学版,2010,31(6):868-872.(Zhang Zhi-gang,Yao Guang-chun,Ma Jia,et al.Synthesis of NiFe2O4 spinel nanopowder via low-temperature solid-state reactions [J].Journal of Northeastern University:Natural Science,2010,31(6):868-872.)
[7]  Zhang Z G,Liu Y H,Yao G C,et al.Solid-state reaction synthesis of NiFe2O4 nanoparticles by optimizing the synthetic conditions [J].Physica:E,2012,45:122-129.
[8]  Zhang Z G,Liu Y H,Yao G C,et al.Synthesis and characterization of NiFe2O4 nanoparticles via solid-state reaction [J].International Journal of Applied Ceramic Technology,2013,10(1):142-149.
[9]  Mozaffari M, Ebrahimi F, Daneshfozon S, et al.Preparation of Mn-Zn ferrite nanocrystalline powders via mechanochemical processing [J].Journal of Alloys and Compounds,2008,449 (1/2):65-67.
[10]  Bida S, Sahub P,Pradhan S K.Microstructure characterization of mechanosynthesized nanocrystalline NiFe2O4 by Rietveld’s analysis [J].Physica:E,2007,39 (2):175-184.
[11]  Málek J.Kinetic analysis of crystallization processes in amorphous materials [J].Thermochimica Acta,2000,355 (1/2):239-253.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133