全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解TSP的离散人工蜂群算法

DOI: 10.3969/j.issn.1005-3026.2015.08.003, PP. 1074-1079

Keywords: 离散人工蜂群算法,旅行商问题,2-Opt,学习算子,排斥算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对旅行商问题,提出了一种新型的离散人工蜂群算法.根据该优化问题及离散量的特点,对引领蜂、跟随蜂和侦查蜂角色转变机制和搜索策略进行了重新定义.蜂群角色转变基于定义的收益比因子.引领蜂邻域搜索采用2-Opt算子和学习操作来加速算法收敛速度;跟随蜂搜索引入禁忌表来提高算法的局部求精能力;侦查蜂搜索定义了排斥操作来保持种群的多样性,从而较好地平衡了算法的探索及开采能力.实验结果表明,算法能够在较短时间内找到相对满意解,提高了TSP的求解效率.

References

[1]  Karaboga D.An idea based on honey bee swarm for numerical optimization[R/OL].[2014-05-12].
[2]  Xu C,Duan H. Artificial bee colony optimized edge potential function approach to target recognition for low-altitude aircraft[J].Pattern Recognition Letters,2010,31(13):1759 -1772.
[3]  Ozturk C,Karaboga D,Gorkemli B. Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm[J].Sensors,2011,11(6):6056-6065.
[4]  Horng M H.Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation[J].Expert Systems with Applications,2011,38(11):13785-13791.
[5]  Omkar S N,Senthilnath J,Khandelwal R,et al.Artificial bee colony(ABC) for multi-objective design optimization of composite structures[J].Applied Soft Computing,2011,11(1):489-499.
[6]  Kiran M S,Iscan H,Gunduz M.The analysis of discrete artificial bee colony algorithm with neighborhood operator on traveling salesman problem[J].Neural Computing and Applications,2013,23(1):9-21.
[7]  胡中华,赵敏.基于人工蜂群算法的TSP仿真[J].北京理工大学学报,2009,29(11):978-982.(Hu Zhong-hua,Zhao Min.Simulation on traveling salesman problem(TSP) based on artificial bees colony algorithm[J].Transactions of Beijing Institute of Technology,2009,29(11):978-982.)
[8]  林小军,叶东毅.一种带规范知识引导的改进人工蜂群算法[J].模式识别与人工智能,2013,26(3):307-314.(Lin Xiao-jun,Ye Dong-yi.An improved artificial bee colony algorithm with guided normative knowledge[J].Pattern Recognition and Artificial Intelligence,2013,26(3):307-314.)
[9]  Croes G A.A method for solving traveling-salesman problems[J].Operations Research,1958,6(6):791-812.
[10]  Yang C H,Tang X L,Zhou X J,et al.A discrete state transition algorithm for traveling salesman problem[J].Control Theory & Applicaions,2013,30(8):1040-1046.(上接第1068页)从表2可以清楚地看出:在不同的天气条件下,光伏系统始终实现了MPPT控制,但由于阈值ε、跟踪步长以及测量误差等原因,两种方法的输出功率与理想值之间均存在微小误差.同时表2也显示,采用本文方法的输出功率值始终比P&O法更接近于输出功率的理想值.综合上述所有实验可以得出结论:当采用VWP模糊MPPT控制策略时,输出功率特性比传统扰动观察法具有更好的快速性、准确性和平稳性.5结语本文提出的VWP分段模糊MPPT控制方法采用了两条VWP直线将输出功率曲线划分为三个跟踪区域,每个区域采用了不同的模糊控制技术.该控制方法既最大限度地提高了跟踪的快速性,又兼顾了跟踪的准确性和平稳性.仿真实验显示了该控制策略运行的良好性能,验证了该控制策略相对于传统的扰动观察法在跟踪最大功率点时快速性、准确性和平稳性方面的优势.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133