Kadlec P,Grbic R,Gabrys B.Review of adaptation mechanisms for data-driven soft sensors[J].Computers and Chemical Engineering,2011,35(1):1-24.
[2]
Du W L,Guan Z Q,Qian F.The time series soft-sensor modeling based on Adaboost LS-SVM[C]//The 8th World Congress on Intelligent Control and Automation(WCICA).Jinan,2010:1491-1495.
[3]
Wang H Q,Li P,Gao F R,et al.Kernel classifier with adaptive structure and fixed memory for process diagnosis [J].AIChE Journal,2006,52(10):3515-3531.
[4]
刘毅,金福江,高增梁.时变过程在线辨识的即时递推核学习方法研究[J].自动化学报,2013,39(5):602-609.(Liu Yi,Jin Fu-jiang,Gao Zeng-liang.Online identification of time-varying processes using just-in-time recursive kernel learning approach[J].Acta Automatica Sinica,2013,39(5):602-609.)
[5]
葛志强,刘毅,宋执环,等.一种基于局部模型的非线性多工况过程检测方法[J].自动化学报,2008,34(7):792-797.(Ge Zhi-qiang,Liu Yi,Song Zhi-huan,et al.Local model based monitoring for nonlinear multiple mode process[J]. Acta Automatica Sinica ,2008,34(7):792-797.)
[6]
Cheng C,Chiu M S.A new data-based methodology for nonlinear process modeling[J].Chemical Engineering Science,2004,59(13):2801-2810.
[7]
Fujiwara K,Kano M,Hasebe S.Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design[J].Control Engineering Practice,2010,20(4):371-378.
[8]
Wang L W,Wang X,Feng J F.Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition[J].Pattern Recognition,2006,39(3):456-464.
[9]
Raich A,Cinar A.Statistical process monitoring and disturbance diagnosis in multivariable continuous processes[J].AIChE Journal,1994,42(4):995-1009.
[10]
罗健旭,邵惠鹤.应用多神经网络建立动态软测量模型[J].化工学报,2003,54(12):170-177.(Luo Jian-xu ,Shao Hui-he.Developing dynamic soft sensors using multiple neural networks[J].Journal of Chemical Industry and Engineering,2003,54(12):170-177.)