[1] | Vance C P,Uhde Stone C,Allan D L.Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource[J].New Phytologist,2003,157:423-447.
|
[2] | Vance C P.Symbiotic nitrogen fixation and phosphorus acquisition:plant nutrition in a world of declining renewable resources[J].Plant Physiology,2001,127:390-397.
|
[3] | Steen I.Phosphorus availability in the 21st century.Management of a non-renewable resource[J].Phosphorus and Potassium,1997,217:25-31.
|
[4] | Hammond J P,Broadly M R,White P J.Genetic responses to phosphorus deficiency[J].Annals Botany(Lond),2004,94:323-332.
|
[5] | Lambers H Y,ShaneM W,CramerM D,et al.Root structure and functioning for efficient acquisition of phosphorus:matching morphological and physiological traits[J].Annals Botany(Lond),2006,98:693-713.
|
[6] | Lynch J P.Root architecture and plant productivity[J].Plant Physiology,1995,109:7-13.
|
[7] | Liao H,Rubio G,Yan X,et al.Effect of phosphorus availability on basal root shallowness in common bean[J].Plant and Soil,2001,232:69-79.
|
[8] | Lynch J P,Brown K M.Topsoil foraging:an architectural adaptation of plants to low phosphorus availability[J].Plant and Soil,2001,237:225-237.
|
[9] | Yan X,Liao H,Beebe S E,et al.QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean[J].Plant and Soil,2004,265:17-29.
|
[10] | Beebe S E,Rojas Pierce M,Yan X,et al.Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean[J].Crop Science,2006,46:413-423.
|
[11] | Hill J O,Simpson R J,Moore A D,et al.Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition[J].Plant and Soil,2006,286:7-19.
|
[12] | Ochoa I E,Blair M W,Lynch J P.QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability[J].Crop Science,2006,46:1609-1621.
|
[13] | Bucciarelli B,Hanan J,Palmquist D,et al.A standardized method for analysis of Medicago truncatula phenotype development[J].Plant Physiology,2006,142:207-219.
|
[14] | Uhde-Stone C,Gilbert G,Johnson J M F,et al.Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism[J].Plant and Soil,2003a,248:99d116.
|
[15] | Uhde Stone C,Zinn K E,Ramirez Yáez M,et al.Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency[J].Plant Physiology,2003,131:1064-1079.
|
[16] | Broughton W J ,Hernández G,Blair M,et al.Beans(Phaseolus spp.):model food legumes[J].Plant and Soil,2003,252:55-128.
|
[17] | Ramírez M,Graham M A,Blanco López L,et al.Sequencing and analysis of common bean ESTs.Building a foundation for functional genomics[J].Plant Physiology,2005,137:1211-1227.
|
[18] | [18Hernández G,Ramírez M,Valdés-López O,et al.Phosphorus stress in common bean:root transcript and metabolic responses[J].Plant Physiology,2007,144:752-767.
|
[19] | López Bucio J,Hernández Abreu E,Sánchez Calderón L,et al.Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system[J].Plant Physiology,2002,129:244-256.
|
[20] | López-Bucio J,Cruiz-Ramirez A,Herrera-Estrella L.The role of nutrient availability in regulating root architecture[J].Current Opinion in Plant Biology,2003,6:280-287.
|
[21] | Raghothama K G,Karthikeyan A S.Phosphate acquisition[J].Plant and Soil,2005,274:37-49.
|
[22] | Hammond J P,Bennett M J,Bowen H C,et al.Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants[J].Plant Physiology,2003,132:578-596.
|
[23] | Yi K,Wu Z,Zhou J,et al.OsPTF1,a novel transcription factor involved in tolerance to phosphate starvation in rice[J].Plant Physiology,2005,138:2087-2096.
|
[24] | Aung K,Lin S I,Wu C C,et al.Pho2,a phosphate overaccumulator,is caused by a nonsense mutation in a microRNA399 target gene[J].Plant Physiology,2006,141:1000-1011.
|
[25] | Bari R,Pant B D,Stitt M,et al.Pho2,microRNA399,and PHR1 define a phosphate-signaling pathway in plants[J].Plant Physiology,2006,141:988-999.
|
[26] | Müller,Morant M,Jarmer H,et al.Genomewide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism [J].Plant Physiology,2007,143:156-171.
|
[27] | Wu P,Ma L,Hou X,et al.Phosphate starvation triggers distinct alternations of genome expression in Arabidopsis roots and leaves[J].Plant Physiology,2003,132:1260-1271.
|
[28] | Mission J,Raghothama K G,Jain A,et al.A genome wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation[J].Proceedings of the National Academy of Science of the United States of America,2005,102:11934-1139.
|
[29] | Graham M A,Ramirez M,Valdes López O,et al.Identification of candidate phosphorus stress induced genes in Phaseolus vulgaris through clustering analysis across several plant species[J].Functional Plant Biology,2006,33:789-797.
|
[30] | Chen W,Provart N J,Glazebrook J,et al.Expression profilematrix of Arabidopsis transcription factor genes suggest their putative function in response to environmental stresses[J].The Plant Cell,2002,14:559-574.
|
[31] | Rubio V,Linhares F,Solano R,et al.A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J].Genes ? Development,2001,15:2122-2133.
|
[32] | Tang Z,Sadka A,Morishige D T,et al.Homeodomain leucine zipper proteins bind to the phosphate response domain of the soybean VspB tripartite promoter[J].Plant Physiology,2001,125:797-809.
|
[33] | Singh K B,Foley R C,O?ate Sánchez L.Transcription factors in plant defense and stress responses[J].Current Opinion in Plant Biology,2002,5:430-436.
|
[34] | Eulgem T,Rushton PJ,Robatzek S,et al.The WRKY superfamily of plant transcription factors[J].Trends in Plant Science,2000,5:199-206.
|
[35] | Riechmann J L,Heard J,Martin G,et al.Arabidopsis transcription factors:genome wide comparative analysis among eukaryotes[J].Science,2000,290:2105-2110.
|
[36] | Stracke R,Werber M,Weisshaar B.The R2R3-MYB gene family in Arabidopsis thaliana[J].Current Opinion in Plant Biology,2001,4:447-456.
|
[37] | Guo A,He K,Liu D,et al.DATF:a database of Arabidopsis transcription factors[J].Bioinformatic,2005,21:2568-2569.
|
[38] | Devaiah B N,Karthikeyan A S,Raghothama K G.WRKY75 transcription factor is a modulator by phosphate acquisition and root development in Arabidopsis[J].Plant Physiology,2007,143:1789-1801.
|
[39] | Bartel D P.MicroRNAs:genomics,biogenesis,mechanism and function[J].Cell,2004,116:281-297.
|
[40] | Jones-Rhodes M W,Bartel D P.Computational identification of plant microRNAs and their targets,including a stress induced miRNA[J].Molecular Cell,2004,14:787-799.
|
[41] | Xie Z,Allen E,Fahlgren N,et al.Expression of Arabidopsis MIRNA genes[J].Plant Physiology,2005,138:2145-2154.
|
[42] | Chen Z,Zhang J,Kong J,et al.Diversity of endogenous small non-coding RNAs in Oryza sativa[J].Genetica,2006,128:21-31.
|
[43] | Reinhart B J,Weinstein E G,Rhoades M W,et al.MicroRNAs in plants[J].Genes ? Development,2002,16:1616-1626.
|
[44] | Rhoades M W,Reinhart B J,Lim L P,et al.Prediction of plant microRNA targets[J].Cell,2002,110:513-520.
|
[45] | Sunkar R,Zhu J K.Novel and stress regulated microRNAs and other small RNAs from Arabidopsis[J].The Plant Cell,2004 16:2001-2019.
|
[46] | Fujii H,Chiou T J,Lin S I,et al.A miRNA involved in phosphate-starvation response in Arabidopsis[J].Current Biolpgy,2005,15:2038-2043.
|
[47] | Chiou T J,Aung K,Lin S L,et al.Regulation of phosphate homeostasis by microRNA in Arabidopsis[J].The Plant Cell,2006,18:412-421.
|
[48] | Liu J,Uhde-Stone C,Li A,et al.A phosphate transporter with enhanced expression in proteoid roots of white lupin(Lupinus albus L.)[J].Plant and Soil,2001,237:257-266.
|
[49] | Liu J,Samac D A,Bucciarelli B,et al.Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport[J].The The Plant Journalournal,2005,41:257-268.
|
[50] | Uhde Stone C,Liu J,Zinn K E,et al.Transgenic proteoid roots of white lupin:a vehicle for characterizing and silencing root genes involved in adaptation to P stress[J].The Plant Journal,2005,44:840-853.
|
[51] | Karthikeyan A S,Varadarajan D K,Jain A,et al.Phosphate starvation responses are mediated by sugar signaling in Arabidopsis[J].Planta,2006,doi/10.1007/s00425-006-0408-8.
|
[52] | Nacry P,Canivenc G,Muller B,et al.A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis[J].Plant Physiology,2005,138:2061-2074.
|
[53] | Gilbert G A,Knight J D,Vance C P,et al.Proteoid root development of phosphorus-deficient lupin is mimicked by auxin and phosphonate[J].Annals Botany(Lond),2000,85:921-928.
|
[54] | Xie Q,Frugis G,Colgan D,et al.Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J].Genes ? Development,2000,14:3024-3036.
|
[55] | Borch K,Bouma T J,Lynch J P,et al.Ethylene:a regulator of root architectural responses to soil phosphorus availability[J].The Plant Cell Environ,1999,22:425-431.
|
[56] | Ma Z,Baskin T I,Brown K M,et al.Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness[J].Plant Physiology 2003,131:1381-1390.
|
[57] | Grierson C S,Parker J S,Kemp A C. Arabidopsis genes with roles in root hair development[J].Journal of Plant Nutrition and Soil Science,164:2001,131-140.
|
[58] | Werner T,Motyka V,Laucou V,et al.Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J].The Plant Cell,2003,15:2532-2550.
|
[59] | Aloni R,Aloni E,Langhans M,et al.Role of cytokinin and auxin shaping root architecture:regulating vascular differentiation,lateral root initiation,root apical dominance and root gravitropism[J].Annals Botany(Lond),2006,97:883-893.
|
[60] | Lohar D P,Schaff J E,Laskey J G,et al.Cytokinins play opposite roles in lateral root formation,and nematode and rhizobial symbioses[J].The Plant Journal,2004,38:203-214.
|
[61] | Martin A C,del Pozo J C,Iglesias J,et al.Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis[J].The Plant Journal,2000,24:559-567.
|
[62] | Neumann G,Massonneau A,Langlade N,et al.Physiological aspects of cluster root function and development in phosphorus deficient white lupin(Lupinus albus L.)[J].Annals Botany(Lond),2000,85:909-919.
|