全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大豆科学  2015 

野生大豆和抗草甘膦转基因大豆杂交后代的适合度分析

DOI: 10.11861/j.issn.1000-9841.2015.02.0177, PP. 177-184

Keywords: 野生大豆,抗草甘膦转基因大豆,杂交后代,适合度

Full-Text   Cite this paper   Add to My Lib

Abstract:

野生大豆是大豆遗传改良的重要资源。转基因大豆可能对野生大豆资源存在潜在的农业和生态风险。外源基因从抗草甘膦转基因大豆向野生大豆材料的逃逸不仅需要成功的杂交,还要依赖于杂交后代的适合度。因此野生大豆和抗草甘膦转基因大豆杂交后代的适合度分析,对评价抗草甘膦转基因逃逸引起的生态风险非常必要。在网室条件下,4个野生大豆材料和抗草甘膦转基因大豆RR能够杂交结实,获得有抗草甘膦基因杂交后代群体F1和F2(江浦野生豆-5×RR)。对杂交后代及其母本野生大豆材料的7个农艺性状进行调查,计算适合度并进行t测验分析。结果表明:在没有草甘膦的选择压力下,杂交后代在一些性状上的相对适合度高于母本野生大豆材料;江浦野生豆-5和RR杂交F2代敏感株与抗性株在7个农艺性状有相对适合度上均差异不显著

References

[1]  [1]Zhuang B C. Biological studies of wild soybeans in China [M]Beijing: Science Press, 1999.
[2]  [2]Dong Y S, Zhuang B C, Zhao L M, et al. The genetic diversity of annual wild soybeans grown in China [J] Theoretical and Applied Genetics, 2001, 103: 98-103.
[3]  [3]Lu B R. Conserving biodiversity of soybean gene pool in the biotechnology era [J] Plant Species Biology, 2004, 19: 115-125.
[4]  [4]Lu B R. Multidirectional gene flow among wild, weedy, and cultivated soybeans. In: Crop ferality and volunteerism [M] Edited by Gressel J B. CRC Press, Taylor and Francis, Boca Rato, Florida, 2005: 137-147.
[5]  [5]Andersson M S, de Vicente M C. Gene flow between crops and their wild relatives[M].Foreword by NC Ellstrand. Johns Hopkins University Press, 2010: 465-481.
[6]  [6]Mizuguti A, Ohigashi K, Yoshimura Y, et al. Hybridization between GM soybean (Glycine max (L) Merr) and wild soybean (Glycine soja Sieb et Zucc) under field conditions in Japan[J]. Environmental Biosafety Research, 2010, 9: 13-23.
[7]  [7]Wang K J, Li X H. Interspecific gene flow and the origin of semi-wild soybean revealed by capturing the natural occurrence of introgression between wild and cultivated soybean populations [J] Plant Breeding, 2011, 130: 117-127.
[8]  [8]Jin Y, He T H, Lu B R. Fine scale genetic structure in a wild soybean (Glycine soja) population and the implications for conservation [J]. New Phytologist, 2003, 159: 513-519.
[9]  [9]Wang K J, Li X H, Zhang J J, et al. Natural introgression from cultivated soybean (Glycine max) into wild soybean (Glycine soja) with the implications for origin of populations of semi-wild type and for biosafety of wild species in China [J] Genetic Resources and Crop Evolution, 2010, 57: 747-761.
[10]  [10]Wang K J, Li X H. Genetic diversity and gene flow dynamics revealed in the rare mixed populations of wild soybean (Glycine soja) and semi-wild type (Glycine gracilis) in China [J] Genetic Resources and Crop Evolution, 2013, 60: 2303-2318.
[11]  [11]Wang K J, Li X H. Genetic characterization and gene flow in different geographical-distance neighbouring natural populations of wild soybean (Glycine soja.Sieb & Zucc) and implications for protection from GM soybeans [J] Euphytica, 2012, 186: 817-830.
[12]  [12]Padgette S R, Re D B, Barry G F, et al. New weed control opportunities: development of soybeans with a Roundup Readpgene [M]//Dukeso Herbicide Resistant Crops.Boca Raton, FL: CRC Press, 1996: 53-84.
[13]  .[13]Nakayama Y, Yamaguchi H. Natural hybridization in wild soybean (Glycine max ssp soja) by pollen flow from cultivated soybean (Glycine max ssp max) in a designed population [J]Weed Biology and Management, 2002, 2: 25-30.
[14]  [14]James C. Global status of commercialized Biotech/G M Crops: 2012. ISAAA Brief No.44- ISAAA Ithaca NY.
[15]  [15]Abe J, Hasegawa A, Fukushi H, et al. Introgression between wild and cultivated soybeans of Japan revealed by RFLP anaysis for chloroplast DNAs [J]Economic Botany, 1999, 53: 285-291.
[16]  [16]Oka H I. Genetic control of regenerating success in semi-natural conditions observed among lines derived from a cultivated × wild soybean hybrid [J] Journal of Applied Ecology, 1983, 20: 937-949.
[17]  [17]Wang K J, Li X H, Li F S. Fine-scale phylogenetic structure and major events in the history of the current wild soybean (Glycine soja) and axonomic assignment of semi?wild type (Glycine gracilis. Skvortz) within the Chinese subgenus soja [J] Journal of Heredity, 2012, 103: 13-27.
[18]  [18]Mizuguti A, Yoshimura Y, Matsuo K. Flowering phenologies and natural hybridization of genetically modified and wild soybeans under field conditions [J] Weed Biology and Management, 2009, 9: 93-96.
[19]  [19]Jenczewski E, Ronfort J, Chèvre A M. Crop-to-wild gene flow, introgression and possible fitness effects of transgenes [J] Environmental Biosafety Research, 2003, 2(1): 9-24.
[20]  [20]Hails R S, Morley K. Genes invading new populations: a risk assessment perspective [J]. Trends in Ecology and Evolution, 2005, 20 (5): 245-252.
[21]  [21]Song Z P, Lu B R, Wang B, et al. Fitness estimation through performance comparison of F1?hybrids with their parental species Oryza rufipogon and O sativa [J]Annals of Botany, 2004, 93: 311-316.
[22]  [22]van den Bulcke M, de Schrijver A, de Bernardi D, et al. Detection of genetically modified plant products by protein strip testing: an evaluation of real-life samples [J]European Food Research and Technology, 2007, 225(1): 49-57.
[23]  [23]Berdal K G, Holst.Jensen A. Roundup Ready soybean event-specific real-time quantitative PCR assay and estimation of the practical detection and quantification limits in GMO analyses [J] European Food Research and Technology, 2001, 213: 432-438.
[24]  [24]Zhang N Y, Linscombem S, Oard J. Out-crossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice [J] Euphytica, 2003, 130: 35-45.
[25]  [25]Wang W, Xia H, Yang X, et al. A novel 5.enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide [J]New Phytologist, 2014, 202(2): 679-688.
[26]  [26]Snow A A, Andersen B, Jorgensen R B. Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B.rapa [J] Molecular Ecology, 1999, 8: 605-615.
[27]  [27]Allainguillaume J, Alexander M, Bullock J M, et al. Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats [J] Molecular Ecology, 2006, 15:1175-1184.
[28]  [28]Snow A A, Moran.Palma P, Rieseberg L H, et al. Fecundity, phenology, and seed dormancy of F1?wild-crop hybrids in sunflower (Helianthus annuus, Asteraceae) [J]American Journal of Botany, 1998, 85: 794-801..
[29]  [29]Spencer L J, Snow A A. Fecundity of transgenic wild-crop hybrids of Cucurbita pepo(Cucurbitaceae): implications for crop-to-wild gene flow [J] Heredity, 2001, 86: 694-702.
[30]  [30]Campbell L G, Snow A A, Ridley C E. Weed evolution after crop gene introgression: greater survival and fecundity of hybrids in a new environment [J] Ecology Letters, 2006, 9: 1198-1209.
[31]  [31]Ahmad Q N, Britten E J, Byth D E. Inversion heterozygosity in the hybrid soybean× Glycine soja Evidence from a pachytene loop configuration and other meiotic irregularities [J] Journal of Heredity, 1979, 70(6): 358-364..
[32]  [32]Cain M L, Milligan B C, Sterand A E. Long-distance seed dispersal in plant populations [J]American Journal of Botany, 2000, 87: 1217-1227.
[33]  [33]Kuroda Y, Kaga A, Tomooka N, et al. Gene flow and genetic structure of wild soybean (Glycine soja) in Japan [J] Crop Science, 2008, 48: 1071-1079.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133