全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Skin Needling to Enhance Depigmenting Serum Penetration in the Treatment of Melasma

DOI: 10.1155/2011/158241

Full-Text   Cite this paper   Add to My Lib

Abstract:

Melasma is a common hypermelanotic disorder affecting the facial area which has a considerable psychological impact on the patient. Managing melasma is a difficult challenge that requires long-term treatment with a number of topical agents, such as rucinol and sophora-alpha. Aims. We aim to compare the combined treatment of skin needling and depigmenting serum with that using depigmenting serum alone in the treatment of melasma, in order to evaluate the use of microneedles as a means to enhance the drug’s transdermal penetration. Methods. Twenty patients were treated with combined skin needling and depigmenting serum on one side of the face and with depigmenting serum alone on the other side. The outcome was evaluated periodically for up to two months using the Melasma Area Severity Index score and the Spectrocolorimeter X-Rite 968. Results. The side with combined treatment (skin needling + depigmenting serum) presented a statistically significant reduction in MASI score and luminosity index (L) levels compared to the side treated with depigmenting serum alone, and clinical symptoms were significantly improved. Conclusions. Our study suggests the potential use of combining skin needling with rucinol and sophora-alpha compounds to achieve better results in melasma treatment compared to rucinol and sophora-alpha alone. 1. Introduction Melasma is an extremely common disorder in women between 20 and 45 years of age which involves alterations in normal skin pigmentation, resulting from the hyperactivity of epidermal melanocytes. It is exacerbated by sun exposure, pregnancy, oral contraceptives, and certain antiepilepsy drugs. The women most likely to develop melasma are those of fertile age with intermediate skin phototypes. Three histological pigmentation patterns have been identified: epidermal, in which the pigment is deposited in the basal or suprabasal layer; dermal, with melanin-laden macrophages in the superficial and middermis; and mixed, which is characterized by features of both the epidermal, and the dermal patterns. Hypermelanosis may be epidermal (brown), dermal (blue-gray), or mixed (brown-gray). Wood’s lamp examination distinguishes epidermal from dermal hyperpigmentation in all skin phototypes except for V and VI, in which it is of no use. In skin phototypes I–IV, epidermal melasma is accentuated but dermal melasma is not. Clinically, the condition is characterized by irregularly shaped, asymptomatic spots ranging in color from beige to brown, which usually occur in the most photo-exposed areas: the upper lip, the cheeks, the cheekbones and

References

[1]  L. D. B. Miot, H. A. Miot, M. G. Da Silva, and M. E. A. Marques, “Physiopathology of melasma,” Anais Brasileiros de Dermatologia, vol. 84, no. 6, pp. 623–635, 2009.
[2]  F. Ayala, P. Lisi, and G. Monfrecola, “Vitiligine e altri disturbi della pigmentazione,” in: Malattie cutanee e veneree, Piccin 2007.
[3]  A. Khemis, A. Kaiafa, C. Queille-Roussel, L. Duteil, and J. P. Ortonne, “Evaluation of efficacy and safety of rucinol serum in patients with melasma: a randomized controlled trial,” British Journal of Dermatology, vol. 156, no. 5, pp. 997–1004, 2007.
[4]  J. K. Son, J. S. Park, J. A. Kim, Y. Kim, S. R. Chung, and S. H. Lee, “Prenylated flavonoids from the roots of Sophora flavescens with tyrosinase inhibitory activity,” Planta Medica, vol. 69, no. 6, pp. 559–561, 2003.
[5]  S. J. Kim, K. H. Son, H. W. Chang, S. S. Kang, and H. P. Kim, “Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens,” Biological and Pharmaceutical Bulletin, vol. 26, no. 9, pp. 1348–1350, 2003.
[6]  Y. B. Ryu, I. M. Westwood, N. S. Kang, et al., “Kurarinol, tyrosinase inhibitor isolated from the root of Sophora flavescens,” Phytomedicine, vol. 15, no. 8, pp. 612–618, 2008.
[7]  A. R. Denet, R. Vanbever, and V. Préat, “Skin electroporation for transdermal and topical delivery,” Advanced Drug Delivery Reviews, vol. 56, no. 5, pp. 659–674, 2004.
[8]  S. W. Hui, “Overview of drug delivery and alternative methods to electroporation,” Methods in Molecular Biology, vol. 423, pp. 91–107, 2008.
[9]  P. Santoianni, M. Nino, and G. Calabro, “Intradermal drug delivery by low frequency sonophoresis (25KHz),” Dermatology Online Journal, vol. 10, no. 2, article 24, 2004.
[10]  S. Mitragotri and J. Kost, “Low-frequency sonophoresis: a review,” Advanced Drug Delivery Reviews, vol. 56, no. 5, pp. 589–601, 2004.
[11]  S. K. Rastogi and J. Singh, “Effect of chemical penetration enhancer and iontophoresis on the in vitro percutaneous absorption enhancement of insulin through porcine epidermis,” Pharmaceutical Development and Technology, vol. 10, no. 1, pp. 97–104, 2005.
[12]  L. Le, J. Kost, and S. Mitragotri, “Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery,” Pharmaceutical Research, vol. 17, no. 9, pp. 1151–1154, 2000.
[13]  A. L. Teo, C. Shearwood, K. C. Ng, J. Lu, and S. Moochhala, “Transdermal microneedles for drug delivery applications,” Materials Science and Engineering B, vol. 132, no. 1-2, pp. 151–154, 2006.
[14]  Y. G. Lv, J. Liu, Y. H. Gao, and B. Xu, “Modeling of transdermal drug delivery with a microneedle array,” Journal of Micromechanics and Microengineering, vol. 16, no. 11, article no. 034, pp. 2492–2501, 2006.
[15]  J. Vandervoort and A. Ludwig, “Microneedles for transdermal drug delivery: a minireview,” Frontiers in Bioscience, vol. 13, no. 5, pp. 1711–1715, 2008.
[16]  D. P. Wermeling, S. L. Banks, D. A. Hudson et al., “Microneedles permit transdermal delivery of a skin-impermeant medication to humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 6, pp. 2058–2063, 2008.
[17]  Y. Wu, Y. Qiu, S. Zhang, G. Qin, and Y. Gao, “Microneedle-based drug delivery: studies on delivery parameters and biocompatibility,” Biomedical Microdevices, vol. 10, no. 5, pp. 601–610, 2008.
[18]  X. M. Wu, H. Todo, and K. Sugibayashi, “Enhancement of skin permeation of high molecular compounds by a combination of microneedle pretreatment and iontophoresis,” Journal of Controlled Release, vol. 118, no. 2, pp. 189–195, 2007.
[19]  S. L. Banks, R. R. Pinninti, H. S. Gill, P. A. Crooks, M. R. Prausnitz, and A. L. Stinchcomb, “Flux across of microneedle-treated skin is increased by increasing charge of naltrexone and naltrexol in vitro,” Pharmaceutical Research, vol. 25, no. 7, pp. 1677–1685, 2008.
[20]  G. Fabbrocini, V. De Vita, F. Pastore, A. Monfrecola, N. Fardella, and S. Cacciapuoti, “The use of skin needling for eutectic mixture of local anesthetics delivery,” Dermathologic Therapy. In press.
[21]  A. G. Pandya, L. S. Hynan, R. Bhore et al., “Reliability assessment and validation of the Melasma Area and Severity Index (MASI) and a new modified MASI scoring method,” Journal of the American Academy of Dermatology, vol. 64, no. 1, pp. 78–83, 2011.
[22]  J. Hadgraft, “Skin, the final frontier,” International Journal of Pharmaceutics, vol. 224, no. 1-2, pp. 1–18, 2001.
[23]  H. Trommer and R. H. H. Neubert, “Overcoming the stratum corneum: the modulation of skin penetration. A review,” Skin Pharmacology and Physiology, vol. 19, no. 2, pp. 106–121, 2006.
[24]  J. Kalbitz, R. Neubert, and W. Wohlrab, “Modulation of skin drug penetrationModulation der Wirkstoffpenetration in die Haut,” Pharmazie, vol. 51, no. 9, pp. 619–637, 1996.
[25]  R. B. Walker and E. W. Smith, “The role of percutaneous penetration enhancers,” Advanced Drug Delivery Reviews, vol. 18, no. 3, pp. 295–301, 1996.
[26]  A. C. Williams and B. W. Barry, “Penetration enhancers,” Advanced Drug Delivery Reviews, vol. 56, no. 5, pp. 603–618, 2004.
[27]  S. Mitragotri, “Synergistic effect of enhancers for transdermal drug delivery,” Pharmaceutical Research, vol. 17, no. 11, pp. 1354–1359, 2000.
[28]  D. S. Orentreich and N. Orentreich, “Subcutaneous incisionless (subcision) surgery for the correction of depressed scars and wrinkles,” Dermatologic Surgery, vol. 21, no. 6, pp. 543–549, 1995.
[29]  D. Fernandes, “Minimally invasive percutaneous collagen induction,” Oral and Maxillofacial Surgery Clinics of North America, vol. 17, no. 1, pp. 51–63, 2005.
[30]  G. Fabbrocini, N. Fardella, A. Monfrecola, I. Proietti, and D. Innocenzi, “Acne scarring treatment using skin needling,” Clinical and Experimental Dermatology, vol. 34, no. 8, pp. 874–879, 2009.
[31]  G. Fabbrocini, M. P. De Padova, V. De Vita, N. Fardella, F. Pastore, and A. Tosti, “Trattamento de ruga periorbitais por terapia de inducao de colageno,” Surgical and Cosmetic Dermatology, vol. 1, no. 3, pp. 106–111, 2009.
[32]  D. V. McAllister, P. M. Wang, S. P. Davis et al., “Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 13755–13760, 2003.
[33]  S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz, “Microfabricated microneedles: a novel approach to transdermal drug delivery,” Journal of Pharmaceutical Sciences, vol. 87, no. 8, pp. 922–925, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133