Peroxisome-proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors that exert in the liver a transcriptional activity regulating a whole spectrum of physiological functions, including cholesterol and bile acid homeostasis, lipid/glucose metabolism, inflammatory responses, regenerative mechanisms, and cell differentiation/proliferation. Dysregulations of the expression, or activity, of specific PPAR isoforms in the liver are therefore believed to represent critical mechanisms contributing to the development of hepatic metabolic diseases, disorders induced by hepatic viral infections, and hepatocellular adenoma and carcinoma. In this regard, specific PPAR agonists have proven to be useful to treat these metabolic diseases, but for cancer therapies, the use of PPAR agonists is still debated. Interestingly, in addition to previously described mechanisms regulating PPARs expression and activity, microRNAs are emerging as new important regulators of PPAR expression and activity in pathophysiological conditions and therefore may represent future therapeutic targets to treat hepatic metabolic disorders and cancers. Here, we reviewed the current knowledge about the general roles of the different PPAR isoforms in common chronic metabolic and infectious liver diseases, as well as in the development of hepatic cancers. Recent works highlighting the regulation of PPARs by microRNAs in both physiological and pathological situations with a focus on the liver are also discussed. 1. Introduction Obesity, the metabolic syndrome (MetS), diabetes, hepatitis viruses (HBV/HCV), and abusive alcohol consumption are currently the principal etiological factors favoring the occurrence of hepatocellular adenoma and carcinoma worldwide [1–8]. With obesity, MetS, and diabetes, the liver can develop a wide spectrum of disorders, occurring in individuals in absence of excessive alcohol consumption, or HBV/HCV infections, and ranging from insulin resistance (IR), nonalcoholic fatty liver diseases (NAFLD, including steatosis and insulin resistance), to nonalcoholic steatohepatitis (NASH, inflammation, and fibrosis associated with steatosis), and to cirrhosis (characterized by replacement of liver tissue by extracellular matrix and regenerative nodules) [9, 10]. Hepatocellular adenoma (HCA) and carcinoma (HCC) can then occur as the ultimate stage of these diseases [11–13]. Since obesity and metabolic diseases have reached pandemic proportions worldwide, the incidence of IR/NAFLD/NASH/cirrhosis and HCA/HCC is expected to dramatically increase in the future, likely
References
[1]
R. Williams, “Global challenges in liver disease,” Hepatology, vol. 44, no. 3, pp. 521–526, 2006.
[2]
W. W. Yip and A. D. Burt, “Alcoholic liver disease,” Seminars in Diagnostic Pathology, vol. 23, no. 3-4, pp. 149–160, 2006.
[3]
G. Marchesini and M. Babini, “Nonalcoholic fatty liver disease and the metabolic syndrome,” Minerva Cardioangiologica, vol. 54, no. 2, pp. 229–239, 2006.
[4]
H. B. El-Serag, “Epidemiology of viral hepatitis and hepatocellular carcinoma,” Gastroenterology, vol. 142, no. 6, pp. 1264.e1–1273.e1, 2012.
[5]
A. M. Shire and L. R. Roberts, “Prevention of hepatocellular carcinoma: progress and challenges,” Minerva Gastroenterologica e Dietologica, vol. 58, no. 1, pp. 49–64, 2012.
[6]
K. A. McGlynn and W. T. London, “The global epidemiology of hepatocellular carcinoma: present and future,” Clinics in Liver Disease, vol. 15, no. 2, pp. 223–243, 2011.
[7]
C. Wang, X. Wang, G. Gong et al., “Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies,” International Journal of Cancer, vol. 130, no. 7, pp. 1639–1648, 2012.
[8]
H. Cornellà, C. Alsinet, and A. Villanueva, “Molecular pathogenesis of hepatocellular carcinoma,” Alcoholism, vol. 35, no. 5, pp. 821–825, 2011.
[9]
M. J. Contos, J. Choudhury, A. S. Mills, and A. J. Sanyal, “The histologic spectrum of nonalcoholic fatty liver disease,” Clinics in Liver Disease, vol. 8, no. 3, pp. 481–500, 2004.
[10]
L. A. Adams and P. Angulo, “Recent concepts in non-alcoholic fatty liver disease,” Diabetic Medicine, vol. 22, no. 9, pp. 1129–1133, 2005.
[11]
S. H. Caldwell, D. M. Crespo, H. S. Kang, and A. M. S. Al-Osaimi, “Obesity and hepatocellular carcinoma,” Gastroenterology, vol. 127, supplement 1, no. 5, pp. S97–S103, 2004.
[12]
H. B. El-Serag, H. Hampel, and F. Javadi, “The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence,” Clinical Gastroenterology and Hepatology, vol. 4, no. 3, pp. 369–380, 2006.
[13]
P. A. Farazi and R. A. DePinho, “Hepatocellular carcinoma pathogenesis: from genes to environment,” Nature Reviews Cancer, vol. 6, no. 9, pp. 674–687, 2006.
[14]
E. Vanni, E. Bugianesi, A. Kotronen, S. De Minicis, H. Yki-J?rvinen, and G. Svegliati-Baroni, “From the metabolic syndrome to NAFLD or vice versa?” Digestive and Liver Disease, vol. 42, no. 5, pp. 320–330, 2010.
[15]
C. Z. Larter, S. Chitturi, D. Heydet, and G. C. Farrell, “A fresh look at NASH pathogenesis. Part 1: the metabolic movers,” Journal of Gastroenterology and Hepatology, vol. 25, no. 4, pp. 672–690, 2010.
[16]
M. Malaguarnera, M. Di Rosa, F. Nicoletti, and L. Malaguarnera, “Molecular mechanisms involved in NAFLD progression,” Journal of Molecular Medicine, vol. 87, no. 7, pp. 679–695, 2009.
[17]
J. R. Lewis and S. R. Mohanty, “Nonalcoholic fatty liver disease: a review and update,” Digestive Diseases and Sciences, vol. 55, no. 3, pp. 560–578, 2010.
[18]
K. Rombouts and F. Marra, “Molecular mechanisms of hepatic fibrosis in non-alcoholic steatohepatitis,” Digestive Diseases, vol. 28, no. 1, pp. 229–235, 2010.
[19]
L. Michalik and W. Wahli, “PPARs mediate lipid signaling in inflammation and cancer,” PPAR Research, vol. 23, no. 7, Article ID 134059, pp. 351–363, 2008.
[20]
G. Li and G. L. Guo, “Role of class II nuclear receptors in liver carcinogenesis,” Anti-Cancer Agents in Medicinal Chemistry, vol. 11, no. 6, pp. 529–542, 2011.
[21]
S. Dharancy, A. Louvet, A. Hollebecque, P. Desreumaux, P. Mathurin, and L. Dubuquoy, “Nuclear receptor PPAR and hepatology: pathophysiological and therapeutical aspects,” Gastroenterologie Clinique et Biologique, vol. 32, no. 3, pp. 339–350, 2008.
[22]
A. Tailleux, K. Wouters, and B. Staels, “Roles of PPARs in NAFLD: potential therapeutic targets,” Biochimica et Biophysica Acta, vol. 1821, no. 5, pp. 809–818, 2012.
[23]
E. R. Kallwitz, A. McLachlan, and S. J. Cotler, “Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease,” World Journal of Gastroenterology, vol. 14, no. 1, pp. 22–28, 2008.
[24]
P. Pettinelli and L. A. Videla, “Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 5, pp. 1424–1430, 2011.
[25]
E. Lima-Cabello, M. V. García-Mediavilla, M. E. Miquilena-Colina et al., “Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C,” Clinical Science, vol. 120, no. 6, pp. 239–250, 2011.
[26]
E. Morán-Salvador, M. López-Parra, V. García-Alonso et al., “Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts,” The FASEB Journal, vol. 25, no. 8, pp. 2538–2550, 2011.
[27]
T. Yamazaki, S. Shiraishi, K. Kishimoto, S. Miura, and O. Ezaki, “An increase in liver PPARγ2 is an initial event to induce fatty liver in response to a diet high in butter: PPARγ2 knockdown improves fatty liver induced by high-saturated fat,” Journal of Nutritional Biochemistry, vol. 22, no. 6, pp. 543–553, 2011.
[28]
M. Moya, M. José Gómez-Lechón, J. V. Castell, and R. Jover, “Enhanced steatosis by nuclear receptor ligands: a study in cultured human hepatocytes and hepatoma cells with a characterized nuclear receptor expression profile,” Chemico-Biological Interactions, vol. 184, no. 3, pp. 376–387, 2010.
[29]
S. Liu, H. J. Wu, Z. Q. Zhang et al., “The ameliorating effect of rosiglitazone on experimental nonalcoholic steatohepatitis is associated with regulating adiponectin receptor expression in rats,” European Journal of Pharmacology, vol. 650, no. 1, pp. 384–389, 2011.
[30]
H. Zheng, S. Li, L. Ma et al., “A novel agonist of PPAR-γ based on barbituric acid alleviates the development of non-alcoholic fatty liver disease by regulating adipocytokine expression and preventing insulin resistance,” European Journal of Pharmacology, vol. 659, no. 2-3, pp. 244–251, 2011.
[31]
A. A. Gupte, J. Z. Liu, Y. Ren et al., “Rosiglitazone attenuates age- and diet-associated nonalcoholic steatohepatitis in male low-density lipoprotein receptor knockout mice,” Hepatology, vol. 52, no. 6, pp. 2001–2011, 2010.
[32]
Y. S. Seo, J. H. Kim, N. Y. Jo et al., “PPAR agonists treatment is effective in a nonalcoholic fatty liver disease animal model by modulating fatty-acid metabolic enzymes,” Journal of Gastroenterology and Hepatology, vol. 23, no. 1, pp. 102–109, 2008.
[33]
G. Lutchman, K. Promrat, D. E. Kleiner et al., “Changes in serum adipokine levels during pioglitazone treatment for nonalcoholic steatohepatitis: relationship to histological improvement,” Clinical Gastroenterology and Hepatology, vol. 4, no. 8, pp. 1048–1052, 2006.
[34]
V. Ratziu, P. Giral, S. Jacqueminet et al., “Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial,” Gastroenterology, vol. 135, no. 1, pp. 100–110, 2008.
[35]
A. J. Sanyal, N. Chalasani, K. V. Kowdley et al., “Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis,” The New England Journal of Medicine, vol. 362, no. 18, pp. 1675–1685, 2010.
[36]
D. B. Savage, G. D. Tan, C. L. Acerini et al., “Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ,” Diabetes, vol. 52, no. 4, pp. 910–917, 2003.
[37]
Y. Hui, L. Yu-yuan, N. Yu-qiang et al., “Effect of peroxisome proliferator-activated receptors-γ and co-activator-1α genetic polymorphisms on plasma adiponectin levels and susceptibility of non-alcoholic fatty liver disease in Chinese people,” Liver International, vol. 28, no. 3, pp. 385–392, 2008.
[38]
J. W. Rey, A. Noetel, A. Hardt et al., “Pro12Ala polymorphism of the peroxisome proliferatoractivated receptor γ2 in patients with fatty liver diseases,” World Journal of Gastroenterology, vol. 16, no. 46, pp. 5830–5837, 2010.
[39]
S. Gawrieh, S. Gawrieh, M. C. Marion, et al., “Genetic variation in the peroxisome proliferator activated receptor-gamma gene is associated with histologically advanced NAFLD,” Digestive Diseases and Sciences, vol. 57, no. 4, pp. 952–957, 2012.
[40]
Z. Yang, J. Wen, Q. Li et al., “PPARG gene Pro12Ala variant contributes to the development of non-alcoholic fatty liver in middle-aged and older Chinese population,” Molecular and Cellular Endocrinology, vol. 348, no. 1, pp. 255–259, 2012.
[41]
A. C. Gupta, A. K. Chaudhory, Sukriti et al., “Peroxisome proliferators-activated receptor γ2 Pro12Ala variant is associated with body mass index in non-alcoholic fatty liver disease patients,” Hepatology International, vol. 5, no. 1, pp. 575–580, 2011.
[42]
E. Y. Jong, M. C. Kyung, H. B. Sei et al., “Reduced expression of peroxisome proliferator-activated receptor-α may have an important role in the development of non-alcoholic fatty liver disease,” Journal of Gastroenterology and Hepatology, vol. 19, no. 7, pp. 799–804, 2004.
[43]
F. Lalloyer, K. Wouters, M. Baron et al., “Peroxisome proliferator-activated receptor-α gene level differently affects lipid metabolism and inflammation in apolipoprotein E2 knock-in mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 7, pp. 1573–1579, 2011.
[44]
M. A. Abdelmegeed, S. H. Yoo, L. E. Henderson, F. J. Gonzalez, K. J. Woodcroft, and B. J. Song, “PPARα expression protects male mice from high fat-induced nonalcoholic fatty liver,” Journal of Nutrition, vol. 141, no. 4, pp. 603–610, 2011.
[45]
Y. Harano, K. Yasui, T. Toyama et al., “Fenofibrate, a peroxisome proliferator-activated receptor α agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver,” Liver International, vol. 26, no. 5, pp. 613–620, 2006.
[46]
C. Z. Larter, M. M. Yeh, D. M. van Rooyen, J. Brooling, K. Ghatora, and G. C. Farrell, “Peroxisome proliferator-activated receptor-α agonist, Wy 14643, improves metabolic indices, steatosis and ballooning in diabetic mice with non-alcoholic steatohepatitis,” Journal of Gastroenterology and Hepatology, vol. 27, no. 2, pp. 341–350, 2012.
[47]
L. Qiu, J. Lin, F. Xu et al., “Inhibition of aldose reductase activates hepatic peroxisome proliferator-activated receptor-α and ameliorates hepatosteatosis in diabetic db/db mice,” Experimental Diabetes Research, vol. 2012, Article ID 789730, 2012.
[48]
C. Z. Larter, M. M. Yeh, J. Cheng et al., “Activation of peroxisome proliferator-activated receptor α by dietary fish oil attenuates steatosis, but does not prevent experimental steatohepatitis because of hepatic lipoperoxide accumulation,” Journal of Gastroenterology and Hepatology, vol. 23, no. 2, pp. 267–275, 2008.
[49]
S. Chen, Y. Li, S. Li, and C. Yu, “A Val227Ala substitution in the peroxisome proliferator activated receptor alpha (PPAR alpha) gene associated with non-alcoholic fatty liver disease and decreased waist circumference and waist-to-hip ratio,” Journal of Gastroenterology and Hepatology, vol. 23, no. 9, pp. 1415–1418, 2008.
[50]
V. G. Athyros, D. P. Mikhailidis, T. P. Didangelos et al., “Effect of multifactorial treatment on non-alcoholic fatty liver disease in metabolic syndrome: a randomised study,” Current Medical Research and Opinion, vol. 22, no. 5, pp. 873–883, 2006.
[51]
C. Fernández-Miranda, M. Pérez-Carreras, F. Colina, G. López-Alonso, C. Vargas, and J. A. Solís-Herruzo, “A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease,” Digestive and Liver Disease, vol. 40, no. 3, pp. 200–205, 2008.
[52]
H. T. Wu, W. Chen, K. C. Cheng, P. M. Ku, C. H. Yeh, and J. T. Cheng, “Oleic acid activates peroxisome proliferator-activated receptor delta to compensate insulin resistance in steatotic cells,” The Journal of nutritional biochemistry. In press.
[53]
C. H. Lee, P. Olson, A. Hevener et al., “PPARδ regulates glucose metabolism and insulin sensitivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3444–3449, 2006.
[54]
L. M. Sanderson, M. V. Boekschoten, B. Desvergne, M. Müller, and S. Kersten, “Transcriptional profiling reveals divergent roles of PPARα and PPARβ/δ in regulation of gene expression in mouse liver,” Physiological Genomics, vol. 41, no. 1, pp. 42–52, 2010.
[55]
R. Sharma and P. Torka, “Peroxisome proliferator-activated receptor-δ induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice,” Hepatology, vol. 48, no. 6, pp. 432–441, 2008.
[56]
S. Liu, B. Hatano, M. Zhao et al., “Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation,” Journal of Biological Chemistry, vol. 286, no. 2, pp. 1237–1247, 2011.
[57]
L. Serrano-Marco, E. Barroso, I. El Kochairi et al., “The peroxisome proliferator-activated receptor (PPAR) beta/delta agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells,” Diabetologia, vol. 55, no. 3, pp. 743–751, 2012.
[58]
E. Barroso, R. Rodríguez-Calvo, L. Serrano-Marco et al., “The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-lipin 1-PPARα pathway leading to increased fatty acid oxidation,” Endocrinology, vol. 152, no. 5, pp. 1848–1859, 2011.
[59]
T. Nagasawa, Y. Inada, S. Nakano et al., “Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARδ agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet,” European Journal of Pharmacology, vol. 536, no. 1-2, pp. 182–191, 2006.
[60]
J. M. Ye, J. Tid-Ang, N. Turner et al., “PPARδ agonists have opposing effects on insulin resistance in high fat-fed rats and mice due to different metabolic responses in muscle,” British Journal of Pharmacology, vol. 163, no. 3, pp. 556–566, 2011.
[61]
H. T. Wu, C. T. Chen, K. C. Cheng, Y. X. Li, C. H. Yeh, and J. T. Cheng, “Pharmacological activation of peroxisome proliferator-activated receptor delta improves insulin resistance and hepatic steatosis in high fat diet-induced diabetic mice,” Hormone and Metabolic Research, vol. 43, no. 9, pp. 631–635, 2011.
[62]
H. J. Lim, J. H. Park, S. Lee, H. E. Choi, K. S. Lee, and H. Y. Park, “PPARδ ligand L-165041 ameliorates Western diet-induced hepatic lipid accumulation and inflammation in LDLR-/- mice,” European Journal of Pharmacology, vol. 622, no. 1–3, pp. 45–51, 2009.
[63]
D. L. Sprecher, C. Massien, G. Pearce et al., “Triglyceride: high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor δ agonist,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 2, pp. 359–365, 2007.
[64]
U. Risérus, D. Sprecher, T. Johnson et al., “Activation of peroxisome proliferator-activated receptor (PPAR)δ promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men,” Diabetes, vol. 57, no. 2, pp. 332–339, 2008.
[65]
H. E. Bays, S. Schwartz, T. Littlejohn III et al., “MBX-8025, a novel peroxisome proliferator receptor-delta agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 9, pp. 2889–2897, 2011.
[66]
T. Miyahara, L. Schrum, R. Rippe et al., “Peroxisome proliferator-activated receptors and hepatic stellate cell activation,” Journal of Biological Chemistry, vol. 275, no. 46, pp. 35715–35722, 2000.
[67]
F. Marra, E. Efsen, R. G. Romanelli et al., “Ligands of peroxisome proliferator-activated receptor γ modulate profibrogenic and proinflammatory actions in hepatic stellate cells,” Gastroenterology, vol. 119, no. 2, pp. 466–478, 2000.
[68]
F. Zhang, Y. Lu, and S. Zheng, “Peroxisome proliferator-activated receptor-gamma cross-regulation of signaling events implicated in liver fibrogenesis,” Cell Signal, vol. 24, no. 3, pp. 596–605, 2012.
[69]
Y. M. Nan, N. Fu, W. J. Wu et al., “Rosiglitazone prevents nutritional fibrosis and steatohepatitis in mice,” Scandinavian Journal of Gastroenterology, vol. 44, no. 3, pp. 358–365, 2009.
[70]
V. Tahan, F. Eren, E. Avsar et al., “Rosiglitazone attenuates liver inflammation in a rat model of nonalcoholic steatohepatitis,” Digestive Diseases and Sciences, vol. 52, no. 12, pp. 3465–3472, 2007.
[71]
G. Lutchman, A. Modi, D. E. Kleiner et al., “The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis,” Hepatology, vol. 46, no. 2, pp. 424–429, 2007.
[72]
F. Yakaryilmaz, S. Guliter, B. Savas et al., “Effects of vitamin e treatment on peroxisome proliferator-activated receptor-α expression and insulin resistance in patients with non-alcoholic steatohepatitis: results of a pilot study,” Internal Medicine Journal, vol. 37, no. 4, pp. 229–235, 2007.
[73]
W. Shan, C. J. Nicol, S. Ito et al., “Peroxisome proliferator-activated receptor-β/δ protects against chemically induced liver toxicity in mice,” Hepatology, vol. 47, no. 1, pp. 225–235, 2008.
[74]
K. Kang, S. M. Reilly, V. Karabacak et al., “Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity,” Cell Metabolism, vol. 7, no. 6, pp. 485–495, 2008.
[75]
K. Hellemans, L. Michalik, A. Dittie et al., “Peroxisome proliferator-activated receptor-β signaling contributes to enhanced proliferation of hepatic stellate cells,” Gastroenterology, vol. 124, no. 1, pp. 184–201, 2003.
[76]
K. Kim, K. H. Kim, E. Ha, J. Y. Park, N. Sakamoto, and J. Cheong, “Hepatitis C virus NS5A protein increases hepatic lipid accumulation via induction of activation and expression of PPARgamma,” FEBS Letters, vol. 583, no. 17, pp. 2720–2726, 2009.
[77]
K. H. Kim, S. P. Hong, K. Kim, M. J. Park, K. J. Kim, and J. Cheong, “HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARγ,” Biochemical and Biophysical Research Communications, vol. 355, no. 4, pp. 883–888, 2007.
[78]
M. V. García-Mediavilla, S. Pisonero-Vaquero, E. Lima-Cabello et al., “Liver X receptor alpha-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication,” Laboratory Investigation, vol. 92, no. 8, pp. 1191–1202, 2012.
[79]
V. Pazienza, M. Vinciguerra, A. Andriulli, and A. Mangia, “Hepatitis C virus core protein genotype 3a increases SOCS-7 expression through PPAR-γ in Huh-7 cells,” Journal of General Virology, vol. 91, pp. 1678–1686, 2010.
[80]
Y. H. Niu, R. T. Yi, H. L. Liu, T. Y. Chen, S. L. Zhang, and Y. R. Zhao, “Expression of COX-2 and PPARg in the livers of patients with acute on chronic HBV-related liver failure and their relationship with clinic parameters,” Zhonghua Gan Zang Bing Za Zhi, vol. 19, no. 7, pp. 511–516, 2011.
[81]
K. H. Kim, H. J. Shin, K. Kim et al., “Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPARgamma,” Gastroenterology, vol. 132, no. 5, pp. 1955–1967, 2007.
[82]
Y. H. Choi, H. I. Kim, J. K. Seong et al., “Hepatitis B virus X protein modulates peroxisome proliferator-activated receptor γ through protein-protein interaction,” FEBS Letters, vol. 557, no. 1–3, pp. 73–80, 2004.
[83]
C. R. Ondracek and A. McLachlan, “Role of peroxisome proliferator-activated receptor gamma coactivator 1alpha in AKT/PKB-mediated inhibition of hepatitis B virus biosynthesis,” Journal of Virology, vol. 85, no. 22, pp. 11891–11900, 2011.
[84]
S. Yoon, J. Jung, T. Kim et al., “Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor γ, controls hepatitis B virus replication,” Virology, vol. 409, no. 2, pp. 290–298, 2011.
[85]
Y. Wakui, J. Inoue, Y. Ueno et al., “Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-γ ligand, rosiglitazone,” Biochemical and Biophysical Research Communications, vol. 396, no. 2, pp. 508–514, 2010.
[86]
D. W. Crabb, A. Galli, M. Fischer, and M. You, “Molecular mechanisms of alcoholic fatty liver: role of peroxisome proliferator-activated receptor alpha,” Alcohol, vol. 34, no. 1, pp. 35–38, 2004.
[87]
T. Moriya, H. Naito, Y. Ito, and T. Nakajima, “‘Hypothesis of seven balances’: molecular mechanisms behind alcoholic liver diseases and association with PPARα,” Journal of Occupational Health, vol. 51, no. 5, pp. 391–403, 2009.
[88]
C. Wu, R. Gilroy, R. Taylor et al., “Alteration of hepatic nuclear receptor-mediated signaling pathways in hepatitis C virus patients with and without a history of alcohol drinking,” Hepatology, vol. 54, no. 6, pp. 1966–1974, 2011.
[89]
S. Dharancy, M. Malapel, G. Perlemuter et al., “Impaired expression of the peroxisome proliferator-activated receptor alpha during hepatitis C virus infection,” Gastroenterology, vol. 128, no. 2, pp. 334–342, 2005.
[90]
J. Goldwasser, P. Y. Cohen, W. Lin et al., “Naringenin inhibits the assembly and long-term production of infectious hepatitis C virus particles through a PPAR-mediated mechanism,” Journal of Hepatology, vol. 55, no. 5, pp. 963–971, 2011.
[91]
B. Rakic, S. M. Sagan, M. Noestheden et al., “Peroxisome proliferator-activated receptor α antagonism inhibits hepatitis C virus replication,” Chemistry and Biology, vol. 13, no. 1, pp. 23–30, 2006.
[92]
M. Pang, S. M. de la Monte, L. Longato et al., “PPARδ agonist attenuates alcohol-induced hepatic insulin resistance and improves liver injury and repair,” Journal of Hepatology, vol. 50, no. 6, pp. 1192–1201, 2009.
[93]
J. Yu, B. Shen, E. S. H. Chu et al., “Inhibitory role of peroxisome proliferator-activated receptor gamma in hepatocarcinogenesis in mice and in vitro,” Hepatology, vol. 51, no. 6, pp. 2008–2019, 2010.
[94]
K. L. Schaefer, K. Wada, H. Takahashi et al., “Peroxisome proliferator-activated receptor γ inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells,” Cancer Research, vol. 65, no. 6, pp. 2251–2259, 2005.
[95]
K. Yoshizawa, D. P. Cioca, S. Kawa, E. Tanaka, and K. Kiyosawa, “Peroxisome proliferator-activated receptor γ ligand troglitazone induces cell cycle arrest and apoptosis of hepatocellular carcinoma cell lines,” Cancer, vol. 95, no. 10, pp. 2243–2251, 2002.
[96]
L. Q. Cao, X. L. Wang, Q. Wang et al., “Rosiglitazone sensitizes hepatocellular carcinoma cell lines to 5-fluorouracil antitumor activity through activation of the PPARγ signaling pathway,” Acta Pharmacologica Sinica, vol. 30, no. 9, pp. 1316–1322, 2009.
[97]
H. J. Lee, Y. Su, P. H. Yin, H. C. Lee, and C. W. Chi, “PPARγ/PGC-1α pathway in E-cadherin expression and motility of HepG2 cells,” Anticancer Research, vol. 29, no. 12, pp. 5057–5063, 2009.
[98]
J. Shim, B. H. Kim, Y. I. Kim et al., “The peroxisome proliferator-activated receptor γ ligands, pioglitazone and 15-deoxy-Δ(12,14)-prostaglandin J(2), have antineoplastic effects against hepatitis B virus-associated hepatocellular carcinoma cells,” International Journal of Oncology, vol. 36, no. 1, pp. 223–231, 2010.
[99]
I. Borbath, I. Leclercq, P. Moulin, C. Sempoux, and Y. Horsmans, “The PPARgamma agonist pioglitazone inhibits early neoplastic occurrence in the rat liver,” European Journal of Cancer, vol. 43, no. 11, pp. 1755–1763, 2007.
[100]
J. Yu, L. Qiao, L. Zimmermann et al., “Troglitazone inhibits tumor growth in hepatocellular carcinoma in vitro and in vivo,” Hepatology, vol. 43, no. 1, pp. 134–143, 2006.
[101]
M. C. Hsu, C. C. Huang, H. C. Chang, T. H. Hu, and W. C. Hung, “Overexpression of Jab1 in hepatocellular carcinoma and its inhibition by peroxisome proliferator-activated receptorγ ligands in vitro and in vivo,” Clinical Cancer Research, vol. 14, no. 13, pp. 4045–4052, 2008.
[102]
Y. M. Shah, K. Morimura, Q. Yang, T. Tanabe, M. Takagi, and F. J. Gonzalez, “Peroxisome proliferator-activated receptor α regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation,” Molecular and Cellular Biology, vol. 27, no. 12, pp. 4238–4247, 2007.
[103]
F. J. Gonzalez and Y. M. Shah, “PPARα: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators,” Toxicology, vol. 246, no. 1, pp. 2–8, 2008.
[104]
J. M. Peters, Y. M. Shah, and F. J. Gonzalez, “The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention,” Nature Reviews, vol. 12, no. 3, pp. 181–195, 2012.
[105]
J. M. Peters, R. C. Cattley, and F. J. Gonzalez, “Role of PPARα in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643,” Carcinogenesis, vol. 18, no. 11, pp. 2029–2033, 1997.
[106]
T. Hays, I. Rusyn, A. M. Burns et al., “Role of peroxisome proliferator-activated receptor-α (PPARα) in bezafibrate-induced hepatocarcinogenesis and cholestasis,” Carcinogenesis, vol. 26, no. 1, pp. 219–227, 2005.
[107]
J. Youssef and M. Badr, “Enhanced hepatocarcinogenicity due to agonists of peroxisome proliferator-activated receptors in senescent rats: role of peroxisome proliferation, cell proliferation, and apoptosis,” TheScientificWorldJournal, vol. 2, pp. 1491–1500, 2002.
[108]
J. C. Corton, “Evaluation of the role of peroxisome proliferator-activated receptor α (PPARα) in mouse liver tumor induction by trichloroethylene and metabolites,” Critical Reviews in Toxicology, vol. 38, no. 10, pp. 857–875, 2008.
[109]
N. Tanaka, K. Moriya, K. Kiyosawa, K. Koike, and T. Aoyama, “Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor α in transgenic mice: implications for HCV-associated hepatocarcinogenesis,” International Journal of Cancer, vol. 122, no. 1, pp. 124–131, 2008.
[110]
N. Tanaka, K. Moriya, K. Kiyosawa, K. Koike, F. J. Gonzalez, and T. Aoyama, “PPARα activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 683–694, 2008.
[111]
K. Morimura, C. Cheung, J. M. Ward, J. K. Reddy, and F. J. Gonzalez, “Differential susceptibility of mice humanized for peroxisome proliferator-activated receptor α to Wy-14,643-induced liver tumorigenesis,” Carcinogenesis, vol. 27, no. 5, pp. 1074–1080, 2006.
[112]
C. Cheung, T. E. Akiyama, J. M. Ward et al., “Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor α,” Cancer Research, vol. 64, no. 11, pp. 3849–3854, 2004.
[113]
L. Xu, C. Han, K. Lim, and T. Wu, “Cross-talk between peroxisome proliferator-activated receptor δ and cytosolic phospholipase A(2)α/cyclooxygenase-2/prostaglandin E(2) signaling pathways in human hepatocellular carcinoma cells,” Cancer Research, vol. 66, no. 24, pp. 11859–11868, 2006.
[114]
H. N. Suh, S. H. Lee, M. Y. Lee, Y. J. Lee, J. H. Lee, and H. J. Han, “Role of interleukin-6 in the control of DNA synthesis of hepatocytes: involvement of PKC, p44/42 MAPKs, and PPARδ,” Cellular Physiology and Biochemistry, vol. 22, no. 5-6, pp. 673–684, 2008.
[115]
J. E. Leader, C. Wang, M. Fu, and R. G. Pestell, “Epigenetic regulation of nuclear steroid receptors,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1589–1596, 2006.
[116]
J. Mann, D. C. K. Chu, A. Maxwell et al., “MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis,” Gastroenterology, vol. 138, no. 2, pp. 705.e4–714.e4, 2010.
[117]
Y. Zhou, X. Jia, M. Zhou, and J. Liu, “Egr-1 is involved in the inhibitory effect of leptin on PPARγ expression in hepatic stellate cell in vitro,” Life Sciences, vol. 84, no. 15-16, pp. 544–551, 2009.
[118]
H. Xiao, S. E. LeBlanc, Q. Wu et al., “Chromatin accessibility and transcription factor binding at the PPARγ2 promoter during adipogenesis is protein kinase A-dependent,” Journal of Cellular Physiology, vol. 226, no. 1, pp. 86–93, 2011.
[119]
M. C. Mitterberger, G. Kim, U. Rostek, R. L. Levine, and W. Zwerschke, “Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-gamma2,” Experimental Cell Research, vol. 318, no. 8, pp. 877–886, 2012.
[120]
S. R. Farmer, “Transcriptional control of adipocyte formation,” Cell Metabolism, vol. 4, no. 4, pp. 263–273, 2006.
[121]
G. P. Lobo, J. Amengual, H. N. M. Li et al., “β,β-carotene decreases peroxisome proliferator receptor γ activity and reduces lipid storage capacity of adipocytes in a β,β-carotene oxygenase 1-dependent manner,” Journal of Biological Chemistry, vol. 285, no. 36, pp. 27891–27899, 2010.
[122]
K. M. Wadosky and M. S. Willis, “The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation,” American Journal of Physiology, vol. 302, no. 3, pp. H515–H526, 2012.
[123]
C. E. Juge-Aubry, E. Hammar, C. Siegrist-Kaiser et al., “Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor by phosphorylation of a ligand-independent trans-activating domain,” Journal of Biological Chemistry, vol. 274, no. 15, pp. 10505–10510, 1999.
[124]
A. J. Gilde and M. Van Bilsen, “Peroxisome proliferator-activated receptors (PPARS): regulators of gene expression in heart and skeletal muscle,” Acta Physiologica Scandinavica, vol. 178, no. 4, pp. 425–434, 2003.
[125]
S. Yu and J. K. Reddy, “Transcription coactivators for peroxisome proliferator-activated receptors,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 936–951, 2007.
[126]
A. Grimson, K. K. H. Farh, W. K. Johnston, P. Garrett-Engele, L. P. Lim, and D. P. Bartel, “MicroRNA targeting specificity in mammals: determinants beyond seed pairing,” Molecular Cell, vol. 27, no. 1, pp. 91–105, 2007.
[127]
R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993.
[128]
W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008.
[129]
H. K. Saini, S. Griffiths-Jones, and A. J. Enright, “Genomic analysis of human microRNA transcripts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 45, pp. 17719–17724, 2007.
[130]
Y. Lee, M. Kim, J. Han et al., “MicroRNA genes are transcribed by RNA polymerase II,” The EMBO Journal, vol. 23, no. 20, pp. 4051–4060, 2004.
[131]
K. Breving and A. Esquela-Kerscher, “The complexities of microRNA regulation: mirandering around the rules,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 8, pp. 1316–1329, 2010.
[132]
Y. Zeng and B. R. Cullen, “Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences,” Journal of Biological Chemistry, vol. 280, no. 30, pp. 27595–27603, 2005.
[133]
D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.
[134]
R. Yi, Y. Qin, I. G. Macara, and B. R. Cullen, “Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs,” Genes and Development, vol. 17, no. 24, pp. 3011–3016, 2003.
[135]
E. Lund, S. Güttinger, A. Calado, J. E. Dahlberg, and U. Kutay, “Nuclear export of microRNA precursors,” Science, vol. 303, no. 5654, pp. 95–98, 2004.
[136]
S. A. Melo and M. Esteller, “A precursor microRNA in a cancer cell nucleus: get me out of here!,” Cell Cycle, vol. 10, no. 6, pp. 922–925, 2011.
[137]
H. Zhang, F. A. Kolb, L. Jaskiewicz, E. Westhof, and W. Filipowicz, “Single processing center models for human Dicer and bacterial RNase III,” Cell, vol. 118, no. 1, pp. 57–68, 2004.
[138]
R. I. Gregory, T. P. Chendrimada, N. Cooch, and R. Shiekhattar, “Human RISC couples microRNA biogenesis and posttranscriptional gene silencing,” Cell, vol. 123, no. 4, pp. 631–640, 2005.
[139]
T. Kawamata, H. Seitz, and Y. Tomari, “Structural determinants of miRNAs for RISC loading and slicer-independent unwinding,” Nature Structural and Molecular Biology, vol. 16, no. 9, pp. 953–960, 2009.
[140]
C. Y. Park, Y. S. Choi, and M. T. McManus, “Analysis of microRNA knockouts in mice,” Human Molecular Genetics, vol. 19, no. R2, pp. R169–R175, 2010.
[141]
D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi, and D. P. Bartel, “The impact of microRNAs on protein output,” Nature, vol. 455, no. 7209, pp. 64–71, 2008.
[142]
P. Sood, A. Krek, M. Zavolan, G. Macino, and N. Rajewsky, “Cell-type-specific signatures of microRNAs on target mRNA expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2746–2751, 2006.
[143]
Y. Gao, J. Schug, L. B. McKenna, J. Le Lay, K. H. Kaestner, and L. E. Greenbaum, “Tissue-specific regulation of mouse microRNA genes in endoderm-derived tissues,” Nucleic Acids Research, vol. 39, no. 2, pp. 454–463, 2011.
[144]
T. Thum, “MicroRNA therapeutics in cardiovascular medicine,” EMBO Molecular Medicine, vol. 4, no. 1, pp. 3–14, 2012.
[145]
P. Kantharidis, B. Wang, R. M. Carew, and H. Y. Lan, “Diabetes complications: the microRNA perspective,” Diabetes, vol. 60, no. 7, pp. 1832–1837, 2011.
[146]
V. Rottiers and A. M. Naar, “MicroRNAs in metabolism and metabolic disorders,” Nature Reviews Molecular Cell Biology, vol. 13, no. 4, pp. 239–250, 2012.
[147]
K. C. Sonntag, “MicroRNAs and deregulated gene expression networks in neurodegeneration,” Brain Research, vol. 1338, pp. 48–57, 2010.
[148]
R. M. O'Connell, D. S. Rao, A. A. Chaudhuri, and D. Baltimore, “Physiological and pathological roles for microRNAs in the immune system,” Nature Reviews Immunology, vol. 10, no. 2, pp. 111–122, 2010.
[149]
P. P. Medina, M. Nolde, and F. J. Slack, “OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma,” Nature, vol. 467, no. 7311, pp. 86–90, 2010.
[150]
S. Costinean, N. Zanesi, Y. Pekarsky et al., “Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7024–7029, 2006.
[151]
H. Xu, J. H. He, Z. D. Xiao et al., “Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development,” Hepatology, vol. 52, no. 4, pp. 1431–1442, 2010.
[152]
J. Krützfeldt, N. Rajewsky, R. Braich et al., “Silencing of microRNAs in vivo with “antagomirs”,” Nature, vol. 438, no. 7068, pp. 685–689, 2005.
[153]
M. Castoldi, M. V. Spasic, S. Altamura et al., “The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice,” Journal of Clinical Investigation, vol. 121, no. 4, pp. 1386–1396, 2011.
[154]
D. Ferland-McCollough, S. E. Ozanne, K. Siddle, A. E. Willisand, and M. Bushell, “The involvement of microRNAs in type 2 diabetes,” Biochemical Society Transactions, vol. 38, no. 6, pp. 1565–1570, 2010.
[155]
J. Haybaeck, N. Zeller, and M. Heikenwalder, “The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis,” Swiss Medical Weekly, vol. 141, Article ID w13287, 2011.
[156]
S. Bala and G. Szabo, “MicroRNA signature in alcoholic liver disease,” International Journal of Hepatology, vol. 2012, Article ID 498232, 2012.
[157]
O. Waidmann, V. Bihrer, T. Pleli et al., “Serum microRNA-122 levels in different groups of patients with chronic hepatitis B virus infection,” Journal of Viral Hepatitis, vol. 19, no. 2, pp. e58–e65, 2012.
[158]
J. I. Henke, D. Goergen, J. Zheng et al., “MicroRNA-122 stimulates translation of hepatitis C virus RNA,” The EMBO Journal, vol. 27, no. 24, pp. 3300–3310, 2008.
[159]
X. Jiang, E. Tsitsiou, S. E. Herrick, and M. A. Lindsay, “MicroRNAs and the regulation of fibrosis,” FEBS Journal, vol. 277, no. 9, pp. 2015–2021, 2010.
[160]
S. Putta, L. Lanting, G. Sun, G. Lawson, M. Kato, and R. Natarajan, “Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 23, no. 3, pp. 458–469, 2012.
[161]
Y. Ladeiro, G. Couchy, C. Balabaud et al., “MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations,” Hepatology, vol. 47, no. 6, pp. 1955–1963, 2008.
[162]
Y. Wang, A. T. C. Lee, J. Z. I. Ma et al., “Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target,” Journal of Biological Chemistry, vol. 283, no. 19, pp. 13205–13215, 2008.
[163]
L. Zheng, G. C. Lv, J. Sheng, and Y. D. Yang, “Effect of miRNA-10b in regulating cellular steatosis level by targeting PPAR-α expression, a novel mechanism for the pathogenesis of NAFLD,” Journal of Gastroenterology and Hepatology, vol. 25, no. 1, pp. 156–163, 2010.
[164]
K. Kida, M. Nakajima, T. Mohri et al., “PPARalpha is regulated by miR-21 and miR-27b in human liver,” Pharmaceutical Research, vol. 28, no. 10, pp. 2467–2476, 2011.
[165]
D. Gatfield, G. Le Martelot, C. E. Vejnar et al., “Integration of microRNA miR-122 in hepatic circadian gene expression,” Genes and Development, vol. 23, no. 11, pp. 1313–1326, 2009.
[166]
M. Karbiener, C. Fischer, S. Nowitsch et al., “MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARγ,” Biochemical and Biophysical Research Communications, vol. 390, no. 2, pp. 247–251, 2009.
[167]
S. Y. Kim, A. Y. Kim, H. W. Lee et al., “MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression,” Biochemical and Biophysical Research Communications, vol. 392, no. 3, pp. 323–328, 2010.
[168]
E. K. Lee, M. J. Lee, K. Abdelmohsen et al., “MiR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression,” Molecular and Cellular Biology, vol. 31, no. 4, pp. 626–638, 2011.
[169]
R. Martinelli, C. Nardelli, V. Pilone et al., “MiR-519d overexpression is associated with human obesity,” Obesity, vol. 18, no. 11, pp. 2170–2176, 2010.
[170]
J. Wang, Y. Song, Y. Zhang et al., “Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice,” Cell Research, vol. 22, no. 3, pp. 516–527, 2012.
[171]
C. Jennewein, A. Von Knethen, T. Schmid, and B. Brüne, “MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor γ (PPARγ) mRNA destabilization,” Journal of Biological Chemistry, vol. 285, no. 16, pp. 11846–11853, 2010.
[172]
D. Iliopoulos, K. N. Malizos, P. Oikonomou, and A. Tsezou, “Integrative MicroRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks,” PLoS ONE, vol. 3, no. 11, Article ID e3740, 2008.
[173]
J. Zhou, K. C. Wang, W. Wu et al., “MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 25, pp. 10355–10360, 2011.
[174]
J. L. Tong, C. P. Zhang, F. Nie et al., “MicroRNA 506 regulates expression of PPAR alpha in hydroxycamptothecin-resistant human colon cancer cells,” FEBS Letters, vol. 585, no. 22, pp. 3560–3568, 2011.