全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

桥梁多灾害研究综述

DOI: 10.13577/j.jnd.2014.0604, PP. 32-37

Keywords: 多灾害,极端荷载,桥梁,荷载组合,失效概率

Full-Text   Cite this paper   Add to My Lib

Abstract:

多种极端灾害给桥梁带来的严重后果强调说明了桥梁多灾害设计研究的重要性和必要性,而目前国内外的桥梁设计规范并没有考虑多种极端灾害的共同作用。首先回顾了多灾害理论在桥梁设计中的提出和发展,以及存在的问题。很多学者进行了两个极端荷载下桥梁多灾害响应的尝试,包括用优化理论寻找设计最优解、用试验验证多灾害设计的桥梁构件、用实测数据进行易损性分析以及用分项失效概率理论进行多灾组合等。进而介绍了几种主要的荷载组合理论在多灾害组合中应用。基于全寿命理论的桥梁设计越来越受到研究者的重视,它能够在桥梁全生命周期中考虑多灾害等因素,是未来多灾害研究的重要方向。

References

[1]  Li Y, Ellingwood B R. Framework for multihazard risk assessment and mitigation for wood-frame residential construction [J]. Journal of Structural Engineering, 2009, 135(2):159-168.
[2]  Lindell M K, Hwang S N. Households’ perceived personal risk and responses in a multihazard environment [J]. Risk Analysis, 2008, 28(2):539-556.
[3]  Crandell J H, McKee S P. Performance evaluation of light frame structures in earthquakes and hurricanes [C].Advanced Technology in Structural Engineering, 2000:1-19.
[4]  Unnikrishnan V U, Barbato M, Petrini F, et al. Probabilistic performance based risk assessment considering the interaction of wind and windborne debris hazard [C]. Advances in Hurricane Engineering, 2013: 1183-1193.
[5]  Crosti C, Duthinh D, Simiu E. Risk consistency and synergy in multihazard design [J]. Journal of Structural Engineering, 2011, 137(8), 844-849.
[6]  Hwang H M, Ushiba H, Shinozuka M. Reliability Analysis of Code-Designed Structures under Natural Hazards[R]. New York: Report to MCEER, SUNY Buffalo, 1988.
[7]  NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA 302) [S]. Washington, D.C.: Building Safety Council, 1997.
[8]  Luco N, Karaca E. Extending the USGS national seismic hazard maps and shakemaps to probabilistic building damage and risk maps[C].10th International Conference on Applications of Statistics and Probability in Civil Engineering, 2007.
[9]  Ghosn M, Moses F, Wang J. Design of Highway Bridges for Extreme Events (NCHRP 489) [R]. Washington, D.C.: Transportation Research Board, National Research Council, 2003.
[10]  Hida S E. Statistical significance of less common load combinations [J]. Journal of Bridge Engineering, 2007, 12(3): 389-392.
[11]  Lee G C, Tong M, Yen P. Multi-hazards design criteria of highway bridge [EB/OL]. https://www.pwri.go.jp/eng/ujnr/joint/38/paper/38-73yen.pdf
[12]  Fujikura S, Bruneau M. Dynamic analysis of multihazard-resistant bridge piers having concrete-filled steel tube under blast loading [J]. Journal of Bridge Engineering, 2012, 17(2): 249-258.
[13]  Fujikura S, Bruneau M, Lopez-Garcia D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading [J]. Journal of Bridge Engineering, 2008, 13(6): 586-594.
[14]  Potra F A, Simiu E. Optimization and multihazard structural design [J]. Jounal of Engineering Mechanics, 2009, 135(12): 1472-1475.
[15]  Duthinh D, Potra F. Probabilistic and optimization considerations in multihazard engineering [C]. Vulnerability, Uncertainty, and Risk, ICVRAM and ISUMA, 2011: 501-509.
[16]  Alipour A, Shafei B, Shinozuka M. Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: scour and earthquake [J]. Journal of Bridge Engineering, 2013, 18(5): 362-371.
[17]  Prasad G G, Banerjee S. The impact of flood-induced scour on seismic fragility characteristics of bridges [J]. Journal of Earthquake Engineering, 2013, 17(6): 803-828.
[18]  Liang Z, Lee G C. Towards multiple hazard resilient bridge; a methodology for modeling frequent and infrequent time-varying loads-part I, comprehensive reliability and failure probabilities [J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 11(3): 293-301.
[19]  Liang Z, Lee G C. Towards multiple hazard resilient bridge; a methodology for modeling frequent and infrequent time-varying loads-part II, example for live and earthquake load effects [J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 11(3): 303-311.
[20]  Turkstra C J, Madsen H. Load combinations in codified structural design [J]. Journal of Structural Engineering. 1980, 106(12):2527-2543.
[21]  American Concrete Institute. Probabilistic Design of Reinforced Concrete Buildings [M]. Detroit, Michigan: American Concrete Institute Press, 1975: 43-61.
[22]  Ellingwood B. Development of a Probability Based Load Criterion for American National Standard A58-Building Code Requirements for Minimum Design Loads in Buildings and Other Structures [S]. Washington D. C.: U.S. Government Printing Office, 1980.
[23]  Wen Y K. A clustering model for correlated load processes [J]. Journal of Structural Engineering. 1981, 107(5): 965-983.
[24]  Wen Y K, Hwang H, Shinozuka M. Development of Reliability-Based Design Criteria for Buildings Under Seismic Load[R]. Buffalo: NCEER-94-0023, State University of New York at Buffalo, 1994.
[25]  Wen Y K. Statistical combination of extreme loads [J]. Journal of Structural Engineering.1977, 103(5):1079-1095.
[26]  Hadjian A H. A basic limitation of partial load factors [C]. 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, PMC2000-337.
[27]  Cai C S. Discussion on AASHTO LRFD load distribution factors for slab-on-girder bridges [J]. Practice Periodical on Structural Design and Construction. 2005, 8: 171-176.
[28]  Miller L J, Durham S A. Comparison of standard load and load and resistance factor bridge design specifications for buried concrete structures [J]. Journal of the Transportation Research Board, 2008: 81-89.
[29]  Gurley K R. Modeling and Simulation of Non-Gaussian Processes [D]. Chicago: Department of Civil Engineering and Geological Sciences, University of Notre Dame, 1997.
[30]  Ellingwood B R. Load and resistance factor criteria for progressive collapse design [C]. National Workshop on Prevention of Progressive Collapse. Washington, D.C.: Worksh Prev Pro Published, 2002.
[31]  Duthinh D, Simiu E. Safety of structures in strong winds and earthquakes: multihazard considerations [J]. Journal of Structural Engineering, 2010, 3: 330-333.
[32]  Potra F A, Simiu E. Multihazard design: structural optimization approach [J]. Journal of Optimization Theory Application, 2010, 144: 120-136.
[33]  Liang Z, Lee C G, Shen J, et al. A Framework for Development of Multi-hazard Load and Resistance Factor Design[R]. Buffalo: MCEER Technical Report, 2011.
[34]  Chopra A K, Goel R K. Building period formulas for estimating seismic displacements [J]. Earthquake Spectra, 2000, 16(2): 533-536.
[35]  Nielson B G, DesRoches R. Analytical seismic fragility curves for typical bridges in the central and southeastern United States [J]. Earthquake Spectra, 2007, 23(3): 615-633.
[36]  Chalk P, Corotis R B. Probability model for design live loads [J]. Journal of Structural Division, ASCE, 1980, 106(10): 2017-2033.
[37]  Matheu E E, Yule D E, Kala R V. Determination of Standard Response Spectra and Effective Peak Ground Accelerations for Seismic Design and Evaluation[R]. US Army Corps of Engineers. 2005.
[38]  Bracci J M, Reeinhorn A M, Mander J B. Seismic retrofit of reinforced concrete buildings designed for gravity loads: performance of structural model [J]. ACI Structural Journal, 1995, 92(5): 597-609.
[39]  Dogruel S, Dargush G F. A framework for multi-hazard design and retrofit of passively damped structure [C]. Building Integration Solutions, AEI. Denver: American Society of Civil Engineers, 2008: 1-12.
[40]  Krauthammer T, Tedesco W T. Resilience of Cities to Terrorist and other Threats: A Multihazard Approach to Insure Resilient Urban Structures [M].New York: Springer-Verlag New York Inc., 2008: 259-272.
[41]  McCullough M, Kareem A. Anatomy of damage to coastal construction: a multi-hazard perspective [C]. Structures Congress, ASCE, 2009, 1287-1296.
[42]  Li Y. Assessment of damage risks to residential buildings and cost-benefit of mitigation strategies considering hurricane and earthquake hazards [J]. Journal of Performance of Constructed Facilities, 2012, 26(1): 7-16.
[43]  Li Y, Ahuja A, Padgett J E. Review of methods to assess, design for, and mitigate multiple hazards [J]. Journal of Performance of Constructed Facilities, 2012, 26(1): 104-117.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133