全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

巨-子结构控制体系地震易损性分析

DOI: 10.13577/j.jnd.2014.0509, PP. 70-77

Keywords: 巨-子结构控制体系,增量动力分析,易损性分析,近场地震,远场地震

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于性能的巨-子结构控制体系的地震易损性分析方法。定义了巨-子结构控制体系的4个极限状态,提出了基于巨-子结构控制体系极限破坏状态确定结构抗震性能水平限值的方法。通过考虑近场与远场地震动的不确定性,采用增量动力分析(IDA)对比分析了传统巨-子结构抗震体系和巨-子结构控制体系在近、远场地震作用下的地震易损性,并得到了两者的易损性曲线,给出了巨-子结构控制体系的破坏概率。所得结果可供地震灾害的巨-子结构控制体系损伤评估参考。

References

[1]  Feng M Q, Mita A. Vibration control of tall buildings using mega-sub configuration[J]. Journal of Engineering Mechanics, 1995, 121(10): 1082-1087.
[2]  Chai W, Feng M Q. Vibration control of super tall buildings subjected to wind loads[J]. International Journal of Nonlinear Mechanics, 1997, 32(4): 665-668.
[3]  Shinozuka M, Feng M Q, Jee L. Statistic analysis of fragility curves[J]. Journal of Engineering Mechanics, 2000, 126(20): 1224-1231.
[4]  Hwang H H M, Jaw J W. Probabilistic damage analysis of structures[J]. Journal of Structural Engineering, 1990, 116(7): 1992-2007.
[5]  Pan Y, Agrawal A K, Agrawal M, et al. Seismic Fragility of Multispan Simply: Supported Steel Highway Bridge in New York State.Ⅰ: Bridge Modeling, Parametric Analysis, and Retrofit Design[J]. Journal of Bridge Engineer, 2010, 5(15): 448-461.
[6]  吕大刚, 于晓辉, 潘峰等. 基于改进云图法的结构概率地震需求分析[J]. 世界地震工程, 2010, 26(1): 7-15. LV Dagang, YU Xiaohui, PAN Feng, et al. Probabilistic seismic demand analysis of structures based on an improved cloud method[J]. World earthquake engineering, 2010, 26(1): 7-15.(in Chinese)
[7]  邹勤, 马玉宏, 崔杰. 近海隔震桥梁基于性态的抗震设防标准[J]. 自然灾害学报, 2014, 23(1): 57-63. ZOU Qin, MA Yuhong, CUI Jie. Performance based seismic fortification criteria for offshore isolated bridge[J]. Journal of Natural Disasters, 2014, 23(1): 57-63.(in Chinese)
[8]  姜绍飞,杨博,党永勤. 易损性分析在结构抗震及健康监测中的应用[J]. 建筑科学与工程学报,2008, 25(2):15-23. JIANG Shaofei, YAN Bo, DANG Yongqin. Application of vulnerability analysis in structural seism and health monitoring[J], Journal of Architecture and Civil Engineering 2008, 25(2):15-23.(in Chinese)
[9]  GB50011-2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010. GB50011-2010 Code for seismic design of buildings[S]. Beijing: China Architecture and Building Press, 2010 (in Chinese)
[10]  GB50017-2003 钢结构设计规范[S]. 北京: 中国建筑工业出版社, 2001. GB50011-2010 Code for design of steel structures[S]. Beijing: China Architecture and Building Press,2010 (in Chinese)
[11]  杨超. 大型支撑-高层钢结构抗震性能分析[D]. 大连: 大连理工大学, 2011. Analysis of Seismic Performances of SuPer Braced High-Rise Steel Structures[D]. Dissertation of Dalian University of Technology, 2011.(in Chinese)
[12]  Luco N, Cornell C A. Effects of connection fractures on SMRF seismic drift demands [J]. Journal of Structural Engineering, 2000, 126 (1): 127-136.
[13]  Zhu T J, Tso W K, et al. Effect of peak ground a/v ratio on structural damage [J]. Journal of Structural Engineering, 1988, 5(114): 1019-1037.
[14]  Mackie KR, Stojadinovi B. Fragility basis for California highway overpass bridge seismic decision making. PEER report 2005/02. Berkeley: Pacific Earthquake Engineering Research Center, University of California Berkeley, 2005.
[15]  Padgett J E, Nielson B G, DesRoches R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Eng Struct Dyn, 2008, 37(5): 711-25.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133