全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

支持向量机的研究现状

DOI: 10.11834/jig.200206203

Keywords: 支持向量机,机器学习,VC维,推广性,训练算法,测试速度,

Full-Text   Cite this paper   Add to My Lib

Abstract:

这是本刊特为海内外正在就读和学成立业的博士、博士后青年学者们开辟的一片科普园地.深学浅著是一门德识、慧学、素质修养的学问.你们的新知识、新调研、新观察、新目光、新展望,能够用尽可能深入浅出、通俗流畅的语言,汇报给祖国人民、家乡父老子弟乡亲们吗?中华博士园地,乃耕耘忠孝之地,科教兴国、民族昌盛之地.要用慈母听得懂的语言,写出你们的心声!

References

[1]  [1]张学工. 关于统计学习理论与支持向量机[J]. 自动化学报,2000,26(1):32~43.
[2]  [2]边肇祺,张学工等. 模式识别[M]. 北京:清华大学出版社, 2000:286~294.
[3]  [3]Vapnik V N. The nature of statistical learning theory[M]. NY: Springer-Verlag, 1995.
[4]  [4]Bottou L, Cortes C, Denker J et al. Comparison of classifier methods: A case study in handwritten digit recognition[A]. In: 12th IAPR[C], IEEE Computer Society Press, Los Alamos, California, 1994:77~83.
[5]  [5]Fletcher R. Practical methods of optimization[M]( 2nd edition). New York:John Wiley and Sons Inc, 1987.
[6]  [6]Boser Bernhard E, Guyon Isabelle M, Vapnik Vladimir N. A training algorithm for optimal margin classifiers[EB/OL]. http://www.cs.rhul.ac.uk/colt/nips2000/vincent.ps.
[7]  [7]Edgar Osuna et al. Training support vector machines:An application to face detection[EB/OL]. http://www.citeseer.nj.nec.com/osuna97training.html.
[8]  [8]Platt J. Sequential minimal optimization: A fast algorithm for training support vector machines[A]. In:Advances in Kernel Methods-Support Vector learning[C]. Massachusetts:The MIT Press, 1999:185~208.
[9]  [9]Osuna Edgar, Girosi Federico. Reducing the run-time complexity of support Vector Machines[EB/OL]. http://www.citeseer.nj.nec.com/osuna98reducing.html.
[10]  [10]Burges C. Simplified support vector decision rules[A]. In:Proceedings of the 13th International Conference on Machine Learning[C], CA:Morgan Kaufmann,1996:71~77.
[11]  [11]Oliver Chapelle, Vladimir Vapnik. Choosing multiple parameters for support vector machines[EB/OL]. http://www.citeseer.nj.nec.com/chapelle01choosing.html.
[12]  [12]Chapelle O, Vapnik V, Bonsquet O et al. Choosing kernel parameters for support vector machines[EB/OL]. http://www.citeseer.nj.nec.com/chapelle01choosing.html.
[13]  [13]Krebel Ulrich H G. Pairwise classification and support vector machines[A]. In:Scho ¨lkopf Bernhard(edi.) . Advances in Kernel Methods:Support Vector Learning[C]. Massachusetts,The MIT Press, 1999:255~268.
[14]  [14]Boser Bernhard E, Guyon Isabelle M, Vapnik Vladimir N. A training for optimal margin classifiers[A]. Proceedings of the 5th Annual Workshop on Computational Learning Theory(COLT\'92)[C], Pittsburgh:ACM,1992,5:144~152.
[15]  [15]Bennett K, Blue J. A support vector machine approach to decision trees[R]. Rensselaer Polytechnic Institute, Troy, NY:R.P.I Math Report, 1997:97~100.
[16]  [16]Vapnik V. Statistical learning theory[M]. New York:Wiley, 1998.
[17]  [17]Sch(¨)olkopf B, Smola A, Müller K. Kernel principal component analysis[EB/OL]. http://www.citeseer.nj.nec.com/25296.html.
[18]  [18]Sch(¨)olkopf B, Mika S, Smola A et al. Kernel PCA pattern reconstruction via approximate pre-images[A]. In: L. Niklasson and M. Boyoudian den and T. Ziemke (eds.). Perspectives in Neural Computing[C]. Berlin:springer Verlag, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133