[3]Vapnik V N. The nature of statistical learning theory[M]. NY: Springer-Verlag, 1995.
[4]
[4]Bottou L, Cortes C, Denker J et al. Comparison of classifier methods: A case study in handwritten digit recognition[A]. In: 12th IAPR[C], IEEE Computer Society Press, Los Alamos, California, 1994:77~83.
[5]
[5]Fletcher R. Practical methods of optimization[M]( 2nd edition). New York:John Wiley and Sons Inc, 1987.
[6]
[6]Boser Bernhard E, Guyon Isabelle M, Vapnik Vladimir N. A training algorithm for optimal margin classifiers[EB/OL]. http://www.cs.rhul.ac.uk/colt/nips2000/vincent.ps.
[7]
[7]Edgar Osuna et al. Training support vector machines:An application to face detection[EB/OL]. http://www.citeseer.nj.nec.com/osuna97training.html.
[8]
[8]Platt J. Sequential minimal optimization: A fast algorithm for training support vector machines[A]. In:Advances in Kernel Methods-Support Vector learning[C]. Massachusetts:The MIT Press, 1999:185~208.
[9]
[9]Osuna Edgar, Girosi Federico. Reducing the run-time complexity of support Vector Machines[EB/OL]. http://www.citeseer.nj.nec.com/osuna98reducing.html.
[10]
[10]Burges C. Simplified support vector decision rules[A]. In:Proceedings of the 13th International Conference on Machine Learning[C], CA:Morgan Kaufmann,1996:71~77.
[11]
[11]Oliver Chapelle, Vladimir Vapnik. Choosing multiple parameters for support vector machines[EB/OL]. http://www.citeseer.nj.nec.com/chapelle01choosing.html.
[12]
[12]Chapelle O, Vapnik V, Bonsquet O et al. Choosing kernel parameters for support vector machines[EB/OL]. http://www.citeseer.nj.nec.com/chapelle01choosing.html.
[13]
[13]Krebel Ulrich H G. Pairwise classification and support vector machines[A]. In:Scho ¨lkopf Bernhard(edi.) . Advances in Kernel Methods:Support Vector Learning[C]. Massachusetts,The MIT Press, 1999:255~268.
[14]
[14]Boser Bernhard E, Guyon Isabelle M, Vapnik Vladimir N. A training for optimal margin classifiers[A]. Proceedings of the 5th Annual Workshop on Computational Learning Theory(COLT\'92)[C], Pittsburgh:ACM,1992,5:144~152.
[15]
[15]Bennett K, Blue J. A support vector machine approach to decision trees[R]. Rensselaer Polytechnic Institute, Troy, NY:R.P.I Math Report, 1997:97~100.
[16]
[16]Vapnik V. Statistical learning theory[M]. New York:Wiley, 1998.
[17]
[17]Sch(¨)olkopf B, Smola A, Müller K. Kernel principal component analysis[EB/OL]. http://www.citeseer.nj.nec.com/25296.html.
[18]
[18]Sch(¨)olkopf B, Mika S, Smola A et al. Kernel PCA pattern reconstruction via approximate pre-images[A]. In: L. Niklasson and M. Boyoudian den and T. Ziemke (eds.). Perspectives in Neural Computing[C]. Berlin:springer Verlag, 1998.