全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小波图象去噪综述

DOI: 10.11834/jig.20020378

Keywords: 小波去噪,小波萎缩,小波变换,图象压缩,图象去噪,图象处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

小波图象去噪已经成为目前图象去噪的主要方法之一。在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系,不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述,最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望。

References

[1]  [1]Pitas I, Venetsanopoulos A-N. Nonlinear digital filters: Principles and applications[M]. Boston: Kluwer Academic, 1990.
[2]  [2]Astola J. Fundamentals of nonlinear digital filtering[M]. Boca Raton, U.S.A: CRC Press,1997.
[3]  [4]Justusson B I. Median filtering: Statistical properties[A]. In:Huang H S edi. Two-dimensional digital signal processing, Topics in Applied Physics[M]. Berlin: Springer-Verlag, 1981:161~196.
[4]  [6]Coyle E J, Lin J H, Gabbouj M. Optimal stack filtering and the estimation and structural approaches to image processing[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989,37(12):2037~2066.
[5]  [8]Wong E Q, Algazi V R. Image enhancement using linear diffusion and an improved gradient map estimate[A]. In:Proceedings of 1999 IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:154~158.
[6]  [10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
[7]  [11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
[8]  [13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
[9]  [15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
[10]  [17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering \'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.
[11]  [19]Vidakovic B, Lozoya C B. On time-dependent wavelet denoising[J]. IEEE Trans. Signal Processing, 1998,46(9):2549~2551.
[12]  更多...
[13]  [21]Pan Quan, Zhang Pan, Dai Guanzhong et al. Two denoising methods by wavelet transform[J]. IEEE Trans. Signal Processing, 1999,47(12):3401~3406.
[14]  [23]Krim H, Pesquet J C. On the statistics of best bases criteria[A]. In:Antoniadis A, Oppenheim G edis. Wavelets in statistics of Lecture Notes in Statistics[C]. New York: Springer-Verlag, 1995:193~207.
[15]  [25]Israel Cohen, Shalom Raz, David Malah. Translation-invariant denoising using the minimum description length criterion[J]. Signal Processing, 1999,75(3):201~223.
[16]  [27]Bui T D, Chen G. Translation-invariant denoising using multiwavelets[J]. IEEE Trans. Signal Processing, 1998,46(12):3414~3420.
[17]  [29]Jansen M, Bultheel A. Multiple wavelet threshold estimation by generalized cross validation for images with correlated noise[J]. IEEE Trans. Image Processing, 1999,8(7):947~953.
[18]  [31]Stein C. Estimation of the mean of a multivariate normal distribution[J]. Annals of Statistics, 1981,9:1135~1151.
[19]  [33]Krim H, Schick I C. Minimax description length for signal denoising and optimized representation[J]. IEEE Trans. Information Theory, 1999,45(3):898~908.
[20]  [35]Johnstone I M, Silverman B-W. Wavelet threshold estimators for data with correlated noise[J]. Journal of royal statistics society series(B), 1997,59:319~351.
[21]  [37]Xu Yansun, Weaver J B, Healy M J et al. Wavelet transform domain filters:A spatially selective noise filtration technique[J]. IEEE Trans. Image Processing, 1994,3(6):743~758.
[22]  [39]Moulin P, Liu Juan. Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors[J]. IEEE Trans. Information Theory, 1999,45:909~919.
[23]  [42]Maneesh S, Prakash I, Krishna R et al. Segmentation based denoising using multiple compaction domains[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan,1999:372~375.
[24]  [45]Bruce A G, Gao Hong Ye. Understanding waveshrink: variance and bias estimation[EB/OL]. http://www.mathsoft.com/wavelets.html.
[25]  [47]Zhang Xiao Ping, Desai M D. Nonlinear adaptive noise suppression based on wavelet transform[A]. In:Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing[C]. Seatle USA,1998:1589~1592.
[26]  [49]Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans. Signal Processing, 1993,41(12):3397~3415.
[27]  [51]Prakash I, Moulin P. Multiple-domain image modeling and restoration[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan,1999:362~366.
[28]  [53]Sezan M I, Stark H. Image restoration by the method of convex projection[J]. IEEE Trans. Medical Imaging, 1982,MI-1(2):95~101.
[29]  [55]Tekalp A M, Trussell H J. Comparative study of some recent statistical and set-theoretic methods for image restoration[A]. In:Proceedings of IEEE International Conference on Acoustics, speech, signal processing[C]. New York USA, 1988:988~991.
[30]  [57]Pan Quan, Zhang Lei, Zhang Hongcai et al. Adaptive wavelet based spatially de-noising[J]. In:Proceedings of the 4th International Conference on Signal Processing Proceedings[C]. Beijing China,1998:486~489.
[31]  [59]Mihcak M K, Kozintsev I, Ramchandran K. Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising[A].In:Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing[C]. Phoenix,USA,1999:3253~3256.
[32]  [62]Coifman R R, Donoho D L. Translation invariant de-noising[A]. In:Wavelets in Statistics of Lecture Notes in statistics 103[C]. New Youk: Springer-Verlag, 1994:125~150.
[33]  [64]Downie T R, Silverman B W. The discrete multiple wavelet transform and thresholding methods[J]. IEEE Trans. Signal Processing, 1998,46(9):2558~2561.
[34]  [66]Paul M B, Vitanyi, Li Ming. Minimum description length induction, bayesianism, and kolmogorov complexity[J]. IEEE Trans. Information theory, 2000,46(2):446~464.
[35]  [3]Wtukey J. Exploratory data analysis[M]. New York: Addison Wesley, 1977.
[36]  [5]Bovik A C, Huang T S, Munson D C. Generalization of median filtering using linear combinations of order statistics[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1983,31(6):1342~1350.
[37]  [7]Geman D, Reynolds G. Constrained restoration and the recovery of discontinuities[J]. IEEE. Trans. Pattern Analysis and Machine Intelligence, 1992,14(3):367~383.
[38]  [9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
[39]  [12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
[40]  [14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
[41]  [16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
[42]  [18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846.
[43]  [20]Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81:425~455.
[44]  [22]Donoho D L, Johnstone I M, Kerkyacharian G et al. Wavelet shrinkage:asymptopia?[J]. Journal of royal statistics society series(B), 1995,57:301~369.
[45]  [24]Shark L K, Yu C. Denoising by optimal fuzzy thresholding in wavelet domain[J]. Electronics Letters, 2000,36(6):581~582.
[46]  [26]Weyrich N, Warhola G T. Wavelet shrinkage and generalized cross validation for image denoising[J]. IEEE Trans. Image Processing, 1998,7(1):82~90.
[47]  [28]Zhang Xiao Ping, Desai M D. Adaptive denoising based on SURE risk[J]. IEEE Signal Processing Letters, 1998,5(10):265~267.
[48]  [30]Han K J, Tewfik A H. Hybrid wavelet transform filter for image recovery[A].In:Proceedings of the International Conference on Image Processing[C]. Chicago USA, 1998:540~544.
[49]  [32]Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. J.ASA, 1995,90:1200~1223.
[50]  [34]Badulescu P, Zaciu R. Removal of mixed-noise using order statistic filter and wavelet domain Wiener filter[A]. In:Proceedings of the International Semiconductor Conference[C]. Sinaia Romania, 1999:301~304.
[51]  [36]Malfait M, Roose D. Wavelet-based image denoising using a Markov random field a priori model[J]. IEEE Trans. Imgae Processing, 1997,6(4):549~565.
[52]  [38]Chang S G, Yu Bin, Vetterli M. Adaptive wavelet thresholding for image denoising and comopression[J]. IEEE Trans. Image Processing, 2000,9(9):1532~1546.
[53]  [40]Jansen M, Malfait M, Bultheel A. Generalized cross validation for wavelet thresholding[J]. Signal Processing, 1997,56(1):33~44.
[54]  [41]Hansen M, Yu Bin. Wavelet thresholding via MDL for Natural Images[J]. IEEE Trans. Information Theory, 2000,46(5):1778~1788.
[55]  [43]Chang S G, Yu Bin, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denosing[J]. IEEE Trans. Image Processing, 2000,9(9):1522~1530.
[56]  [44]Krim H, Tucker D, Mallat S G et al. On denoising and best signal representation[J]. IEEE Trans. Information Theory, 1999,5(7):2225~2238.
[57]  [46]Zhang Xiao Ping, Luo Zhiquan. New time-scale adaptive denoising method based on wavelet shrinkage[A]. In:Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing[C]. Phoenix USA, 1999:1629~1632.
[58]  [48]Mihcak M K, Kozintsev I, Ramchandran K et al. Low-complexity image denoising based on statistical modeling of wavelet coefficients[J]. IEEE Signal Processing Letters, 1999,6(12):300~303.
[59]  [50]Demoment G. Image reconstruction and restoration: overview of common estimation structures and problems[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1989,37(12):2024~2036.
[60]  [52]Choi H, Baraniuk R G. Multiple basis wavelet denoising using besov projections[A]. In:Proceedings of International Conference on Image Processing[C]. Kobe Japan,1999:595~599.
[61]  [54]Sezan M I, Stark H. Tomographic image reconstruction from incomplete view data by convex projection and direct fourier inversion[J]. IEEE Trans. Medical Imaging, 1984,MI-3(2):91~98.
[62]  [56]Youla D C, Webb H. Image restoration by the method of convex projections. Part I-theory[J]. IEEE Trans. Medical Imaging, 1982,MI-1(2):81~94.
[63]  [58]John M, Sundaresan S N, Ramakrishna P V. Wavelet based image denoising: VQ-Bayesian technique[J]. Electronics Letter, 1999,35(19):1625~1626.
[64]  [60]Crouse M S, Baraniuk R G, Nowak R D. Signal estimation using wavelet-Markov models[A]. In:Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing[C]. Munich Germany,1997:3429~3432.
[65]  [61]Liu Juan, Moulin P. Image denoising based on scale-space mixture modeling of wavelet coefficients[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan,1999:386~390.
[66]  [63]Ghael S P, Sayeed A M, Baraniuk R G. Improved wavelet denoising via empirical wiener filtering[A]. In:Proceedings of SPIE[C]. San Diego USA, 1997:389~399.
[67]  [65]Hui Y, Kok C W, Nguyen T Q. Wavelet shrinkage denoising using paraunitary shift-invariant filter banks[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Hong Kong China,1997:185~188.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133