[1]Shu HuaZhong,Yan YuLong,Bao XuDong.et al.Treatment planning optimization by quasi Newton and simulated annealing methods for gamma unit treatment system[J].Physics on Medical Biology,1998,43(10):2795~2805.
[5]Stone RA,Smith V,Verhey L.Inverse treatment planning for the gamma knife[J].Medical Physics,1993,20(3):865.
[4]
[7]Harmon J,Bova F,Meeks S.Inverse radiosugery treatment planning through de-convolution and constrained optimization[J].Medical Physics,1998,25(10):1850~1857.
[5]
[9]Gibon D,Rousseau J,Castelain B,et al.Treatment planning optimization by conjugate gradients and simulated annealing methods in stereotatic radiosurgery[J].International Journal Radiation Oncology Biology Physics,1995,33(1):201~210.
[6]
[11]Wu Q J,Bourland J D.Three-dimensional skeletonization for computer-assisted treatment planning in radiosurgery[J].Computerized Medical Imaging and Graphics,2000,24(4):243~251.
[7]
[12]Thomas H Wagner,Taeil Yi,Sanford L M,et al.A geometrically based method for automated radiosurgery planning[J].International Journal Radiation Oncology Biology Physics,2000,48(5):1599~1611.
[8]
[14]Palagyi K.3D Thinning algorithms(skeletonization)and its medical applications.http://www.inf.u-szeged.hu/~palagyi/skel/skel.html#Introduction
[9]
[2]Shu HuaZhong,Yan YuLong,Luo LiMin,et al.Three dimensional optimization of treatment planning for gamma unit treatment system [J].Medical Physics,1998,25(12):2352~2357.
[13]Yong Zhou,Arie Kaufman,Arthur W Toga.Three dimensional skeleton and centerline generation based on an approximate minimum distance field[J].The Visual Computer,1998,14(7):303~314.
[15]
[15]Gunilla B.On digital distance transforms in three dimensions[J].Computer Vision and Image Understanding,1996,64(3):368~376.