[2]Avinash C Kak, Malcolm Slaney. Principles of computerized tomographic imaging[M]. New York: IEEE Press, 1999.
[2]
[4]Michael L Tracy, Steven A Johnson. Inverse scattering solutions by a sinc basis, multiple source, moment method-part Ⅱ: Numerical Evaluations [J ]. Ultrasonic Imaging, 1983,5 (4) :376~392.
[3]
[6]Chew W C, Wang Y M. Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method [J]. IEEE Transactions on Medical Imaging, 1990,9(2): 218~225.
[4]
[8]Nadine Joachimowicz, Jordi J Mallorqui, Jean-Chharles Bolomey et al. Convergence and stability assessment of new-kantorovich reconstruction algorithms for microwave tomography[J]. IEEE Transactions on Medical Imaging, 1997,17(4)562~570.
[5]
[10]Per Christian Hansen. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank[J]. SIAM Journal on Scientific and Statistical Computing, 1990,11 (3) : 503 ~ 518.
[6]
[12]Andrey N Tikhonov, Vasiliy Y Arsenin, Solutions of ill-posed problems[M]. Washington D. C: V. H. Winston & Sons,1977.
[7]
[1]Broup D T, Johnson S A, Kim W W. Nonperturbative diffraction tomography via gauss-newton iteration applied to the scattering integral equation [J]. Ultrasonic Imaging, 1992,14(5) :69~85.
[8]
[3]Steven A Johnson, Michael L Tracy. Inverse scattering solutions by a sinc basis, multiple source, moment method part Ⅰ: Theory[J]. Ultrasonic Imaging, 1983,5(4):361~375.
[9]
[5]Wang Y M, Chew W C. An iterative solution of twodimensional electromagnetic inverse scattering problem [J].International Journal of Imaging Systems and Technology, 1989,1(1):100~108.
[10]
[7]Ann Franchois, Christian Pichot. Microwave Imaging-Complex Permittivity Reconstruction with a Levenberg-Marquardt Method[J]. IEEE Transactions on Antennas and Propagation,1997,45(2) :203~215.
[11]
[9]Hansen P C. Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems [J]. Numerical Algorithms, 1994,6( Ⅰ - Ⅱ ) :1~35.
[12]
[11]Gene H Golub, Charles F Van Loan. Matrix computations[M].Baltimore, Maryland, U. S. A: The Johns Hopkins University Press, 1983.