全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

挖掘空间关联规则的前缀树算法设计与实现

DOI: 10.11834/jig.200304159

Keywords: 空间关联规则挖掘,空间数据库,前缀树算法,数据组织,检索技术,知识发现,挖掘策略,挖掘方法,性能评价

Full-Text   Cite this paper   Add to My Lib

Abstract:

空间关联规则挖掘是在空间数据库中进行知识发现的一类重要问题.为此提出了挖掘空间关联规则的二阶段策略,通过多轮次单层布尔型关联规则挖掘,自顶向下逐步细化空间谓词的粒度,从而空间谓词的计算量大大减少.同时,设计了一种基于前缀树的单层布尔型关联规则挖掘算法(FPT-Generate),不需要反复扫描数据库,不产生候选模式集,并在关键优化技术上取得了突破.实验表明,以FPT-Generate为挖掘引擎的空间关联规则发现系统的时间效率与空间可伸缩性远远优于以经典算法Apriori为引擎的系统。

References

[1]  [2]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[A]. In: SIGMOD\'1993[C], Washington, D.C. , May 1993.
[2]  [4]Srikant R, Agrawal R. Mining generalized association rules[A].In: VLDB\'1995[C], Zurich, Switzerland, Sept. 1995: 407~419.
[3]  [6]Agrawal R, Aggarwal C, Prasad V V V. A tree projection algorithm for generation of frequent itemsets [J]. Journal of Parallel and Distributed Computing, 2000,61 (3): 350~371.
[4]  [8]Bayardo R J. Efficiently mining long patterns from databases[A]. In: SIGMOD\'1998[C], Seattle, Washington, June 1998:85~93.
[5]  [10]MapInfo Corporation. MapInfo Data: Business Points Sample[DB/OL]. http://www. mapinfo. com/free/index. cfm
[6]  [1]Agrawal R, Srikant R. Fast algorithms for mining association rules [A]. In:VLDB\'1994[C], Santiago, Chile, Sept. 1994:487~499.
[7]  [3]Han J, Fu Y. Discovery of multiple-level association rules from large databases[Al. In: VLDB\'1995 [C], Znrich Switzerland,1995:420~431.
[8]  [5]Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation [A]. In: SIGMOD\'2000 [C], Dallas, TX, May2000.
[9]  [7]Srikant R, Agrawal R. Mining quantitative association rules in large relational tables[A]. In: SIGMOD\'1996 [C], Montreal,Canada, 1996: 1~12.
[10]  [9]Christian Borgelt. Apriori: a program to find association rules[CP/OL]. http://fuzzy. cs. uni-magdeburg. de/~ borgelt

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133