全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二元树复小波变换及其在图象方向滤波中的应用

DOI: 10.11834/jig.200304151

Keywords: 计算机图象处理(520?6040),图象增强,二元树复小波变换,方向滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

复小波变换虽然具有良好的方向选择性和平移不变性,但不具备完全重构性条件,而二元树复小波变换(DTCWT)正好解决了这一难题.在分析二元树复小波分解后的12个高频子带方向性的基础上,利用其良好的方向选择性提出了一种对线形纹理图象进行增强滤波的方法.该方法借助于小波变换域的方向解析性,在各子带中保留图象中各局部主方向的信息而滤除其他方向的噪声.利用该方法进行滤波还可以避免对信号和噪声频率特性和统计特性进行估计,从而大大减小了滤波的复杂程度.以指纹图象为例的实验结果表明,该方法效果较好,便于实现,尤其适用于噪声特性复杂的纹理图象的滤波.

References

[1]  [1]唐良瑞.基于小波高频分量的边缘检测方法[J].北方工业大学学报,2002,14(1):13~16.
[2]  [3]Nick Kinsbury. Shift invariant properties of the dual-tree complex wavelet transform [EB/OL]. www-sigproc. eng. cam.ac. uk/publications/ngk/ngk99b. ps. gz, 2000-10-11/2000-11-8
[3]  [4]Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Trans. on Info. Theory, 1992, 38(2):617~643.
[4]  [6]Donoho D. De-noising by soft- thresholding[J]. IEEE Trans.on Information Theory, 1995, 41(3): 613~627.
[5]  [8]Laine A F, Schuler S, Fan J et al. Mammographic feature enhancement by multiscale analysis[J]. IEEE Trans. on Medical imaging, 1994, 13(4): 725~740.
[6]  [10]Chang G, Vetterli M. Spatial adaptive wavelet thresholding for image denoising[A]. In:Proc IEEE. Int. Conference on Image Processing[C], Chicage, 1997,10(2) :374~377.
[7]  [12]耿茵茵,蔡安妮,孙景鳌.基于小波变换的方向滤波[J].计算机科学,2001,28(10):65~68.
[8]  [13]Antonini M, Barlaud M, Mathieu P et al. Images compression through wavelet transform coding [J]. IEEE Trans on Image Processing, 1992, 1(2): 205~220.
[9]  [15]Pan Quan, Zhang Lei, Dai Guanzhong et al. Two denoising methods by wavelet transform [J]. IEEE Trans on Signal Processing, 1999, 47(12): 3401~3406.
[10]  [2]Nick Kinsbury. Image processing with complex wavelets [EB/OL]. www-sigproc. eng. cam. ac. uk/ publications/ngk/ngk99a. ps. gz, 2000-10-11/2000-11-8
[11]  [5]Mallat S, Zhang S. Characterization of signals from multiscale edges[J]. IEEE Trans. on Pattern Anal. and Mach. Intell. ,1992, 14(7): 710~732.
[12]  [7]Donobo D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81(12): 425~455.
[13]  [9]Lu J, Healy D M, Weaver J B. Contrast enhancement of medical images using multiscale edge representation [J]. Optical Engineering, 1994, 33(7): 2151~2161.
[14]  [11]Chang S Grace, Bin Yu, Martin Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Trans. on Image Processing, 2000, 9 (9): 1522 ~1531.
[15]  [14]Carlotto M. Histogram analysis using a scale-space approach[J]. IEEE Trans. PAMI, 1987,9(1): 121~129.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133