智能车辆导航路径识别的模糊神经网络方法研究
DOI: 10.11834/jig.20030277
Keywords: 模式识别(520?2040),模糊神经网络,智能车辆,视觉导航
Abstract:
研究了采用模糊神经网络来识别JLUIV-2型视觉导航智能车辆模糊和脏污的导航路径的方法,提出了两种模糊神经网络模型.第1种模糊神经网络有5层结构,采用正态分布概率函数作为模糊化函数;第2种模糊神经网络有6层结构,采用π函数作为模糊化函数.同时采用改进的快速BP算法对这两种模糊神经网络进行训练,并采用实际模糊和脏污的条带状导航路标图象进行了识别试验.试验结果表明,所提出的模糊神经网络可使智能车辆有效地识别出模糊和脏污的导航路径
References
[1] | [2]Jochem T, Pomerlean D, Thorpe C. Vision guided lane transition [A]. In: IEEE Symposium on Intelligent Vehicles 1995[C]. Piscataway NJ: IEEE press, 1995:30~35.
|
[2] | [1]Hariyama Takeuchi T, Kameyama M. Reliable stereo matching for highly safe intelligent vehicles and its VLSI implementation[A]. In: IEEE Symposium on Intelligent Vehicles 2000 [C].Piscataway NJ: IEEE press, 2000:123~128.
|
[3] | [3]Scott Myers. 4-D/RCS Reference Model Architecture for Demo Ⅲ [EB/OL]. http://www. isd. cme. nist. gov/documents/albus/demo3. pdf,1996-05016/1997 04 201.
|
Full-Text