模糊联想记忆网络的增强学习算法
DOI: 10.11834/jig.20030134
Keywords: 模糊联想记忆,增强学习算法,连接权矩阵
Abstract:
针对Kosko提出的最大最小模糊联想记忆网络存在的问题,通过对这种网络连接权学习规则的改进,给出了另一种权重学习规则,即把Kosko的前馈模糊联想记忆模型发展成为模糊双向联想记忆模型,并由此给出了模糊快速增强学习算法,该算法能存储任意给定的多值训练模式对集.其中对于存储二值模式对集,由于其连接权值取值0或1,因而该算法易于硬件电路和光学实现.实验结果表明,模糊快速增强学习算法是行之有效的.
References
[1] | [1]Kosko B. Fuzzy associative memories [A]. In: Kandel A (ed:):Fuzzy Expert Systems Reading[C]. MA, USA: Addison Wesley,1987.
|
[2] | [3]范俊波,靳蕃等.模糊联想记忆的一种有效学习算法[J].电子学报,1996,24(1):112~115.
|
[3] | [5]Wang Y F, Cruz J B Jr, Mulligan J H Jr. Two coding strategies for bidirectioal associative memory [J]. IEEE Trans. Neural Networks,1990,1(1):81~92.
|
[4] | [7]梁学斌,吴立德.异联想记忆模型的快速增强算法[J].模糊识别与人工智能,1996,9(1):37~44.
|
[5] | [2]Kosko B. Neural networks and fuzzy system: A dynamical systems approach to machine intelligence[M]. Englewood Cliff,NJ: Pretice-Hall, 1992.
|
[6] | [4]李晓忠,汪培庄,罗承忠编著.模糊神经网络[M].贵阳:贵州科技出版社,1994.
|
[7] | [6]Wang W J, Lee D L. A modified bidirectional decoding strategy based on the BAM structure [J]. IEEE Trans. Neural Networks, 1993,4(4) : 710~717.
|
[8] | [8]Kosko B. Bidirection alassociative memories [J]. IEEE Trans.syst. man. cybern. ,1988,18(1) :49~60.
|
Full-Text