全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Delaunay规则的无组织采样点集表面重建方法

DOI: 10.11834/jig.20070907

Keywords: 表面重建,拓扑重建,不规则三角网,无组织采样点集,2维流形,3维表面模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

表面重建在3维地理信息系统、计算机辅助设计与图形学、计算机造型、逆向工程、虚拟仿真等应用领域有着广阔的应用前景。在前人研究的基础上,提出了一种基于Delaunay规则的3维表面重建方法,通过将局部采样顶点投影到局部切平面上,利用Delaunay规则对投影点进行约束三角剖分,并将剖分得到的顶点连接关系映射到3维空间中,即可得到采样点之间的相互连接关系,实现采样曲面S的表面重建。实验结果表明,算法在表面重建过程中可以有效检测不充分采样区域以及表面边界部分,适用于开、闭两种类型曲面的表面重建。此外,算法还具有实现简单、运行高效等优点。

References

[1]  Hoppe H,DeRose,Duchamp T,et al.Surface reconstruction from unorganized points[ A ].In:Cunningham S ed.Proceeding of SIGGRAPH\'92[ C ],Danvers:Assison-Wssley Publishing Company,1992:71~78.
[2]  Edelsbrunner H,Muche E P.Three-dimensional alpha shapes[ J].ACM Transactions on Graphics,1994,13(1):43~72.
[3]  Amenta N,Bern M,Amvysselis M.A new Voronoi-based surface reconstruction algorithm[ A ].In:ACM SIGGRAPH[ C ],Orlando,New York,USA,1998:415~421.
[4]  Amenta N,Choi S,Kolluri R K.The power crust,unions of balls,and the medial axis transform[ J].Computational Geometry Theory & Applications,2001,19(2-3):127~153.
[5]  Adamy U,Giesen J,John M.Surface reconstruction using umbrella filters[J].Computational Geometry & Applications,2002,21 (1-2):63~86.
[6]  Yan Jing-qi,Shi Peng-fei.A new approach to 3D object surface reconstruction from unorganized points[ J ].Chinese Journal of Computers,2001,24(10):1051~1056.[严京旗,施鹏飞.基于无组织结构数据集的三维表面重建算法[J].计算机学报,2001,24(10):1051~1056.]
[7]  Gopi M,Krishnan Shankar.A fast and efficient projection based approach for surface reconstruction[ A ].In:Proceedings of the ⅩⅤSymposium on Computer Graphics and Image Processing(SIBGRAPI\'02)[C],Brasilia,Brazil,2002:179~186.
[8]  Wang Qing,Wang Rong-qing,Bao Hu-jun,et al.A fast progressive surface reconstruction algorithm for unorganized points[ J].Journal of Software,2000,11(9):1221~1227.[王青,王融清,鲍虎军等.散乱数据点的增量快速曲面重建算法[J].软件学报,2000,11(9):1221~1227.]
[9]  Jeong W K.Direct reconstruction of a displaced subdivision surface from unorganized points[ J].Graphical Models,2002,64 (2):78~93.
[10]  Algorri M E,Schmitt F.Surface reconstruction from unstructured 3D data[ J].Computer Graphics Forum,1996,15 (1):47~60.
[11]  Boissonnat J D.Geometric structures for three-dimensional shape representation[ J ].ACM Transactions on Graphics,1984,3 (4):266~286.
[12]  Guo B,Menon J,Willette B.Surface reconstruction using Alpha shapes[J].Computer Graphics Forum,1997,16(4):177~190.
[13]  Amenta N,Choi S,Dey T K,et al.A simple algorithm for homeomorphic surface reconstruction[ A ].In:Proceedings of the 16th Annual ACM Symposium on Computational Geometry[ C],Hong Kong,2000:213~222.
[14]  Adamy U,Giesen J,John M.New techniques for topologically correct surface reconstruction[ A ].In:Proceedings of IEEE Visualization 2000[ C ],Los Alamitos,California,IEEE Computer Society Press,2000:373~380.
[15]  LI Li-xin.Research on the Theory,Method and Application of Surface Reconstruction from Scattered Points[ D ].Hangzhou:Zhejiang University,2001.[李立新.散乱点集曲面重建的理论、方法及应用研究[D].杭州:浙江大学,2001.]
[16]  Huang J,Menq C H.Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology[ J ].Computer Aided Design,1994,34(2):149~165.
[17]  Gopi M,Krishnan S,Silva C T.Surface reconstruction based on lower dimensional localized delaunay triangulation[J].Eurographics,2000,19(3):467~468.
[18]  Bernardini F,Mittleman J,Rushmeier H,et al.The ball-pivoting algorithm for surface reconstruction[ J ].IEEE Transactions on Visualization and Computer Graphics,1999,5(4):349~359.
[19]  Amenta N,Bern M.Surface reconstruction by voronoi filtering[J].Discrete Computational Geometry,1999,22(4):481~504.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133