全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于核的Fisher非线性最佳鉴别分析在人脸识别中的应用

DOI: 10.11834/jig.20070814

Keywords: 人脸识别,Fisher非线性鉴别分析,核方法,小样本问题,病态问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

抽取最佳鉴别特征是人脸识别中的重要一步。对小样本的高维人脸图像样本,由于各种抽取非线性鉴别特征的方法均存在各自的问题,为此提出了一种求解核的Fisher非线性最佳鉴别特征的新方法,该方法首先在特征空间用类间散度阵和类内散度阵作为Fisher准则,来得到最佳非线性鉴别特征,然后针对此方法存在的病态问题,进一步在类内散度阵的零空间中求解最佳非线性鉴别矢量。基于ORL人脸数据库的实验表明,该新方法抽取的非线性最佳鉴别特征明显优于Fisher线性鉴别分析(FLDA)的线性特征和广义鉴别分析(GDA)的非线性特征。

References

[1]  Belhumeur P N,Hespanha J P,Kriegman D J.Eigsnfaces vs.Fisherfaces:Recognition using class special linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711 ~720.
[2]  Mika S,Ratsch G,Weston J,et al.Fisher discriminant analysis with kernels[A].In:Proceedings of IEEE International Workshop on Neural Networks for Signal Processing Ⅸ[C],Madison,Wisconsin,USA,1999:41 ~48.
[3]  Ma J,Theiler J,Perkins S.Two realizations of a general feature extraction framework[J].Pattern Recognition,2004,37(5):875 ~887.
[4]  Muller K,Mika S,Ratsch G,et al.An introduction to kernel-based learning algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181 ~201.
[5]  Yuen P C,Dai D Q,Feng G C.Wavelet based PCA for human face recognition[A].In:Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation[C],Tucson,Arizona,USA,1998:223 ~ 228.
[6]  Chen L,Liao H,Ko M,et al.A new LDA based face recognition system which can solve the small sample size problem[J].Pattern Recognition,2000,33(10):1713 ~ 1726.
[7]  Bian Zhao-qi,Zhang Chang-shui,Zhang Xue-gong.Pattern Recognition[M].Beijing:Tsinghua University Press,2000.[边肇祺,张长水,张学工.模式识别[M].北京:清华大学出版社,2000.]
[8]  Daniel L S,Weng J.Using discriminant eigenfeatures for image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):831 ~836.
[9]  Baudat G,Anouar F.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12(10):2385~2404.
[10]  Ma J,Sancho-Gómez J L,Ahalt S C.Nonlinear multiclass discriminant analysis[J].IEEE Signal Processing Letters,2003,10(7):196 ~ 199.
[11]  Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
[12]  Chien J T,Wu C C.Discriminant waveletfaces and nearest feature classifiers for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(12):1644 ~ 1649.
[13]  Zhang Ming-chun.Matrix Theory[M].Nanjing:Southeast University Press,1995.[张明淳.工程矩阵理论[M].南京:东南大学出版社,1995.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133