全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多边形单元网格自动生成技术

DOI: 10.11834/jig.20070739

Keywords: 多边形单元,网格生成,Delaunay三角化,Delaunay多边形化

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来兴起的多边形有限元方法,在有限元计算中采用多边形单元划分网格,不仅可以更好地适应求解区域的几何形状,而且增加了网格划分的灵活性。为了更方便有效地生成多边形单元网格,在Delaunay三角形的基础上,通过将共圆Delaunay三角形合并为一个圆内接多边形,首先提出了Delaunay多边形的概念,进而提出了一种多边形网格自动生成的Delaunay多边形化算法。利用该Delaunay多边形化技术,对工程中常见的几何形状进行网格划分的具体算例表明,Delaunay多边形化方法可以生成性质优良的多边形单元网格。

References

[1]  Hu En-qiu,Zhang Xin-fang,Xiang Wen,et al.A review of mesh generation methods for finite element computation[J].Journal of Computer Aided Design and Computer Graphics,1997,9(4):378~383.[胡恩球,张新访,向文等.有限元风格生成方法发展综述[J].计算机辅助设计与图形学学报,1997,9(4):378~383.]
[2]  Shewchuk J R.Delaunay refinement mesh generation[D].Pittsburgh,PA,USA:Carnegie Mellon University,1997.
[3]  Hiyoshi H.Study on interpolation based on Voronoi diagrams[D].Tokyo,Japan; University of Tokyo,2000.
[4]  Ghosh S,Mallett R L.Voronoi cell finite elements[J].Computers & Structures,1994,50(1):33~46.
[5]  Sukumar N,Tabarraei A.Conforming polygonal finite elements[J].International Journal for Numerical Methods in Engineering,2004,61(12):2045~2066.
[6]  Su P,Drysdale R L S.A comparison of sequential Delaunay triangulation algorithms[J].Computational Geometry,1997,7(5~6):361~385.
[7]  Vigo M,Pla N.Computing directional constrained Delaunay triangulations[J].Computers & Graphics,2000,24 (2):181~190.
[8]  Shimada K,Gossard D C.Automatic triangular mesh generation of trimmed parametric surface for finite element analysis[J].Computer Aided Geometric Design,1998,15(3):199~222.
[9]  Guan Zhen-qun,Song Chao,Gu Yuan-xian,et al.Recent advances of research on finite element mesh generation methods[J].Journal of Computer Aided Design and Computer Graphics,2003,15 (1):1~14[关振群,宋超,顾元宪等.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报,2003,15(1); 1~14.]
[10]  Shewchuk J R.Delaunay refinement algorithm for triangular mesh generation[J].Computational Geometry,2002,22(1-3):21~74.
[11]  Wang Zhao-qing.Advances in polygonal finite element method[J].Advances in Mechanics,2006,26(3):344~353.[五兆清.多边形有限元研究进展[J].力学进展,2006,26(3):344~353.]
[12]  Wang Zhao-qing.Study on rational element method[D].Shanghai:Shanghai University,2004.[王兆清.有理单元研究[D].上海:上海大学,2004.]
[13]  Aurenhammer F,Klein R.Voronoi diagram[A].In; Sack J and Urrutia G,eds.Handbook of Computational Geometry[C],Amsterdam,North-Holland:Elsevier Science Publishers,2000:201~290.
[14]  Green P J,Sibson R R.Computing Dirichlet tessellations in the plane[J].The Computer Journal,1978,21(20):168~173.
[15]  Geoge P L,Hecht F,Saltel E.Automatic mesh generation with specified boundary[J].Computer Methods in Applied Mechanics and Engineering,1991,24(2):269~288.
[16]  Seed G M.Delaunay and Voronoi tessellations and minimal simple cycle in triangular region and regular-3 undirected planar graphs[J].Advances Engineering Software,2001,32(1):339~351.
[17]  Indermitte C,Liebling T M,Troyanov M,et al.Voronoi diagrams on piecewise flat surfaces and an application to biological growth[J].Theoretical Computer Science,2001,263(1-2):263~274.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133