全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种新的TSP问题环路构造算法及其在激光雕刻机路径控制中的应用

DOI: 10.11834/jig.20070625

Keywords: 激光雕刻,TSP,环路构造算法,全局构造原则

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过引入全局构造原则,并借鉴了Kruskal、2-opt等算法的思想,提出了一种新的时间复杂度为O(N^2)的环路构造算法,并将其运用于激光雕刻机雕刻复杂图形时的路径优化。本算法生成路径长度约为理论下限的1.1倍,上浮幅度与NN和GD算法比较,分别下降了58%和42%。将此算法嵌入激光雕刻机控制程序,可将雕刻头空走的距离缩减88%。

References

[1]  Johnson D S,McGeoch L A.The traveling salesman problem:a case study in local optimization[A].In:Aarts E H,Lenstra J K,eds.Local Search in Combinatorial Optimization[M],New York:John Wiley and Sons,1996.
[2]  Christofides N.Worst-Case analysis of a new heuristic for the traveling salesman problem.Technical Report[R],No.388,Pittsburgh,PA:Graduate School of Industrial Administration,Carnegie Mellon University,1976.
[3]  Held M,Karp R M.The traveling salesman problem and minimum spanning trees:Part Ⅱ[J].Mathematical Programming,1971:16 ~25.
[4]  WANG Jin-biao.Evolution logic and algorithm for narrow TSP geometric solution[J].Computer Engineering,2005,31(14):75 ~77.[王锦彪.狭义TSP几何解的演化逻辑与算法[J].计算机工程,2005,31(14):75~77.]
[5]  Clarke G,Wright J W.Scheduling of vehicles from a central depot to a number of delivery points[J].Operations Research,1964,12(4):568 ~581.Jul.-Aug.,1964,
[6]  Held M,Karp R M.The traveling-salesman problem and minimum spanning trees[J].Operations Research,1970,18 (6):1138 ~1162.Nov.-Dec.,1970.
[7]  Johnson D S,McGeogh L A,Rothberg E E.Asymptotic experimental analysis for the Held-Karp traveling salesman bound[A].In:Proceedings of the seventh Annual ACM--SIAM Symposium on Discrete Algorithms[C],1996:341 ~ 350.Atlanda Georgia,United States.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133