全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用Barnsley蕨作为陷阱构造伪3D牛顿变换的广义M-J集

DOI: 10.11834/jig.20070419

Keywords: Barnsley蕨,陷阱技术,伪3D,牛顿变换,广义M-J集

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文将Pickover、Carlson和叶瑞松的陷阱技术进行了改造,以Barnsley蕨类植物叶子(简称Barnsley蕨)作为陷阱,并提出了双陷阱技术。将Carlson和叶瑞松采用静态陷阱由陷入法构造复多项式F(z)=z4(c-a0)z2-a0c的伪3D牛顿变换的准M集的方法进行了推广,利用Barnsley蕨陷阱构造并研究了复多项式F(z)=zα(c-a0)zβ-a0c(α,β∈R,且α>β≥2)伪3D牛顿变换的广义M-J集。研究表明:(1)无论α和β取何正整数值,广义M集中都存在着由坏点组成的经典M集,且经典M集的指向随α和β的不同而不同;(2)广义M-J集中存在具有3D效果且与对应陷阱形状相近的大小不同的彩色元素,并具有自相似特征;(3)α和β为正小数时,相角θ主值范围的不同选取将导致广义M-J集的不同演化。

References

[1]  Wang Xing-yuan.Fractal Mechanism of the Generalized Mandelbrot-Julia Sets[M].Dalian:Dalian University of Technology Press,2002:1~58.[王兴元著.广义M-J集的分形机理[M].大连:大连理工大学出版社,2002:1~58.]
[2]  Pickover C A.Computers,Pattern,Chaos and Beauty[M].New York:St.Martin\'s Press,1990:43 ~ 105.
[3]  Kneisl K.Julia sets for the super-Newton method,Cauchy\'s method,and Halley\'s method[J].Chaos,2001,11(2):359 ~370.
[4]  Wegner T,Peterson M.Fractal Creations[M].Mill Valley:The Waite Group Press,1991:168 ~231.
[5]  Walter D J.Systemised serendipity for producing computer art[J].Computers & Graphics,1993,17 (6):699 ~ 700.
[6]  Gilbert W J.Generalizations of Newton\'s method[J].Fractals,2001,9(3):251 ~262.
[7]  Cilingir F.On infinite area for complex exponential function[J].Chaos,Solitons and Fractals,2004,22 (5):1189 ~ 1198.
[8]  Carlson P W.Pseudo-3-D rendering methods for fractals in the complex plane[J].Computers & Graphics,1996,20 (5):751 ~ 758.
[9]  Ye R S.Another choice for orbit traps to generate artistic fractal images[J].Computers & Graphics,2002,26(4):629 ~633.
[10]  Blancharel P.Complex analytic dynamics on the Riemann sphere[J].Bulletin of the American Mathematical Society,1984,11(1):88 ~ 144.
[11]  Mandelbrot B B.The Fractal Geometry of Nature[M].San Fransisco:Freeman W H,1982:5~47.
[12]  Peitgen H O,Saupe D.The Science of Fractal Images[M].Berlin:Springer-Verlag,1988:137 ~ 218.
[13]  Zhang Chi-ping,Shi Yun-hui.Calculation Method[M].Beijing:Science Press,2002:257~260.[张池平,施云慧著.计算方法[M].北京:科学出版社,2002:257~260.]
[14]  Peitgen H O,Saupe D,Haeseler F V.Cayley\'s problem and Julia sets[J].Mathematical Intelligencer,1984,6(1):11 ~20.
[15]  Walter D J.Computer art representing the behavior of the Newtonraphson method[J].Computers & Graphics,1993,17 (4):487 ~ 488.
[16]  Cartwright J H E.Newton maps:fractals from Newton\'s method for the circle map[J].Computers & Graphics,1999,23 (4):607 ~ 612.
[17]  Chen N,Zhu X L,Chung K W.M and J sets from Newton\'s transformation of the transcendental mapping F(z) = ezw + c with vcps[J].Computers & Graphics,2002,26(3):371 ~383.
[18]  Wang Xing-yuan,Liu Wei.Three-order generalized Newton transformation Julia sets[J].Journal of Engineering Graphics,2005,26(2):119~127.[王兴元,刘威.三阶广义牛顿变换的Julia集[J].工程图学学报,2005,26(2):119~127.]
[19]  Carlson P W.Two artistic orbit trap rendering methods for Newton\'s M-set fractals[J].Computers and Graphics,1999,23 (6):925 ~ 931.
[20]  Wang Xing-yuan,Liu Wei.Utilizing trap technique to construct virtual three-dimension Newton transform Mandelbrot-Julia sets[J].Journal of Computer-Aided Design & Computer Graphics,2005,17(4):754~760.[王兴元,刘威.利用陷阱技术构造伪3D牛顿变换的M-J集[J].计算机辅助设计与图形学学报,2005,17(4):754~760.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133