Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X- ray photography[J]. Journal of Theoretical Biology, 1970, 29 (3) : 471 -481.
[2]
Asaki T J, Chartrand R, Vixie K R, et al. Abel inversion using total variation regularization : applications [R], LA-UR-05-2657, USA : Los Alamos National Laboratory, 2005.
[3]
Asaki T .l, Chartrand R, Vixie K R, et al. Abel inversion using total variation regularization [J]. Inverse Problems, 2005, ( 21 ) : 1895 - 1903.
[4]
Hanson K M, Cuningham G M, Jennings G R. Tomographic reconstruction based on flexible geometric models [ A ]. In: Proceedings of 1994 International Conference on Image Processing [C], Austin, Texas, USA, 1994, 2:145-147.
[5]
Bresler Y, Fessler J A, Macovski A. A bayesian approach to reconstruction from incomplete projections of a multiple object 3D domain [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11($) :840 -858.
[6]
Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems [M]. Washington DC, USA: Winston & Sons Press, 1977.
[7]
Hanson K M. A bayesian approach to nonlinear inversion: abel inversion from X-ray attenuation data [ A ]. Transport Theory, Invariant Imbedding, and Integral Equations [M], Lecture Notes in Pure and Applied Mathematics, edited by Nelson P, et al, New York : Dekker Press, 1989:363 - 378.
[8]
Hanson K M. Special topics in test methodology: tomographic reconstruction of axially symmetric objects from a single dynamic radiograph [R]. LA-UR-87-1670, USA: Los Alamos National Laboratory, 1993.
[9]
Hanson K M. Tomographic reconstruction of axially symmetric objects from a single radiograph [ A ]. In: Procedings of 16th International Conference on High Speed Photography and Photonies [C], Strasbourg, Fracne, 1984,491,180 - 187.