全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于局部灰度最大和改进Mahalanobis?

DOI: 10.11834/jig.20080916

Keywords: 肺癌CAD,孤立性肺结节,局部灰度最大,加权的Mahalanobis距离,分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

CT图像中肺结节检测一直是肺癌CAD系统的关键和难点。提出了一种孤立性肺结节自动检测算法,首先对原始CT图像进行有效、准确的肺实质分割;采用寻找局部灰度最大值方法对ROI进行初始分割;再对分割出的各ROI进行特征提取,利用SVM方法对每个特征进行定量描述,根据SVM单特征分类准确率对Mahalanobis距离进行加权改进,最后采用基于改进的Mahalanobis距离进行肺结节分类。实验结果表明,该算法可以较好地提取出CT图像中的孤立性肺结节,具有较高的灵敏度和较低的漏诊率,可以为医生诊断早期肺癌病灶提供帮助信息。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133