全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于类矩阵和特征融合的加权自适应人脸识别

DOI: 10.11834/jig.20080515

Keywords: 人脸识别,特征提取,Gabor小波,主元分析,线性判别分析,类矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了准确快速地进行人脸识别,提出了一种基于类矩阵和特征融合的加权自适应人脸识别算法,该算法首先,提取人脸的全局特征和6个关键部分的局部特征,同时给出了局部特征权值的动态选择方法,由于该法可以根据不同的训练集得出不同的权值,因而增强了算法的自适应能力;然后通过将全局和局部特征加权融合来得出样本的特征矩阵;接着设计出了一种加权PCA方法用于对样本矩阵进行降维;再进一步提出类矩阵的概念,同时给出并证明了类矩阵的推导公式,并据此得出一种新的投影准则;最后,将类矩阵和试验样本分别进行投影,并根据其欧氏距离的大小得出试验人脸的最终类别。试验表明,该算法不仅计算速度快、识别率高,而且能有效解决LDA小样本空间问题,应用前景良好。

References

[1]  Turk M,Pantland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3 (1):71~86
[2]  Bartlett M S,Movellan J R,Sejnowski T J.Face recognition by independent component analysis[J].IEEE Transactions on Neural Networks,2002,13(6):1450 ~ 1464
[3]  Kim K I,Jung K,Kim H J.Face recognition using kernel principal component analysis[J].IEEE Signal Processing Letters,2002,9(2):40 ~42
[4]  Martinez A,Kak A.PCA versus LDA[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23 (2):228 ~ 233.
[5]  Wang Y H,Fan W,Tan T N.Face recognition based on information fusion[J].Chinese Journal of Computers,2005,28 (10):1657~1663.[王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报.2005,28(10):1657~1663]
[6]  Zabrodsky H,Peleg S,Avnir D.Symmetry as a continuous feature[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(12):1154 ~1166.
[7]  Belhumeur V,Hespanda J,Kiregeman D.Eigenfaces vs.flsherfaces:Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19 (7):711 ~720
[8]  Moghaddam B.Principal manifolds and probabilistic subspaces for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (6):780~788
[9]  Mika S,Ratach G,Weston J,et al.Fisher diseriminant analysis with kernels[A].In:Proceedings of IEEE Workshop on Neural Network for Signal Processing[C],Madison,Wisconsin,USA,1999,9:41 ~ 48
[10]  Pentland A,Moghaddam B,Starner View-baaed and modular eigenspaces for face recognition[A].In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C],Seattle,WA,USA 1994:84 ~91

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133