全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于像元集的置信传递立体匹配

DOI: 10.11834/jig.20080322

Keywords: 立体匹配,置信传递,图像分割,平面拟合

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高立体匹配效率和克服处理区域的视差跳跃,提出了一种基于像元集的置信传递立体匹配方法。该方法首先以像素为基元,利用层次置信传递算法得到较为准确的初始视差;然后依次根据颜色和初始视差对参考图像进行分割,再利用分裂合并策略对分割后的像元集进行平面拟合,以消除颜色分割错误对匹配造成的影响;最后在拟合后的像元集空间,利用标准置信传递优化算法得到最终解。采用国际标准图像进行测试的实验结果表明,该方法的匹配效率和精度优于同类方法。

References

[1]  Brown Z Myron,Burschka Darius,Hager G D.Advances in computatianal stereo[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25 (8):993~1008.
[2]  Scharstein D,Szeliski R.Stereo matching with nonlinear diffusion[J].International Journal of Computer Vision,1998,28 (2):155~174.
[3]  Veksler O.Fast variable window for stereo correspondence using integral images[A].In:Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],Madision,Wisconsin,USA,2003:556~561.
[4]  Kolmogorov V,Zabih R.Computing visual correspondence with occlusions using graph cuts[A].In:Proceedings International Conference on Computer Vision[C].Vancouver,Canada,2001,Ⅱ:508~515.
[5]  Tappen M F,Freeman W T.Comparison of graph cuts with belief propagation for stereo,using identical MRF parameters[A].In:Proceedings International Conference on Computer Vision[C],Beijing,China,2003:900~907.
[6]  Sun J,Zheng N N,Shum H Y.Stereo matching using belief propagation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25 (7):787~800.
[7]  Sun J,Li Y,Kang S B,et al.Symmetric stereo matching for occlusion handling[A].In:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],San Diego,CA,USA,2005,2:399~406.
[8]  Meltzer T,Yanover C,Weiss Y.Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation[A].In:Proceedings International Conference on Computer Vision[C],San Diego,CA,USA,2005,1:428~435.
[9]  Wei Y,Quan L.Region-based progressive stereo matching[A].In:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],Washington DC,USA,2004:106~113.
[10]  Birchfield S,Tomasi C.A pixel dissimilarity measure that is insensitive to image sampling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20 (4):401~406.
[11]  Scharstein D,Szeliski R.A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[J].International Journal of Computer Vision,2002,47 (1):7~42.
[12]  Kanade T,Okutomi M.A stereo matching algorithm with an adaptive window:theory and experiment[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16 (9):920~932.
[13]  Veksler O.Stereo matching by compact windows via minimum ratio cycle[A].In:Proceedings International Conference on Computer Vision[C],Vancouver,Canada,2001:540~547.
[14]  Deng Y,Yang Q,Lin X,et al.A symmetric patch-based correspondence model for occlusion handling[A].In:Proceedings International Conference on Computer Vision[C],Beijing,China,2005,2:1316~1322.
[15]  Boykov Y,Veksler O,Zabih R.Fast approximate energy minimization via graph cuts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11):1222~1239.
[16]  Hang L,Chen G.Segment-based stereo matching using graph cuts[A].In:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].Washington,DC,USA,2004,1:74~81.
[17]  Felzenszwalb P F,Huttenlocher D P.Efficient belief propagation for early vision[A].In:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],Washington,DC,USA,2004,1:261~268.
[18]  Kolmogorov V,Wainwright M J.On the optimality of tree-reweighted max-product message-passing[A].In:21st Conference on Uncertainty in Artificial Intelligsnce[C],Edinburgh,Scotland,2005:316~323.
[19]  Tao H,Sawhney H S,Kumar R.A global matching framework for stereo computation[A].In:Proceedings International Conference on Computer Vision[C],Vancouver,Canada,2001,1:532~539.
[20]  Comaniciu D,Meer P.Mean Shift:A robust Approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (5):603~619.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133