全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于梯度方向信息的运动目标检测算法

DOI: 10.11834/jig.20080333

Keywords: 智能视觉监控系统,运动目标检测,帧差,梯度

Full-Text   Cite this paper   Add to My Lib

Abstract:

运动目标检测是智能视觉监控系统的基本内容。在对现有算法分析的基础上提出了一种基于梯度方向信息的运动目标检测算法。首先利用方向信息提取视频图像序列中每一帧的边缘梯度图,然后通过改进传统帧差算法,采用uint8数据格式处理含有时间关系的两帧图像以此确定运动目标粗略边界,经运动目标连通域识别,最后结合梯度方向信息准确提取运动目标的完整轮廓。实验结果表明,该算法克服了传统帧差算法不能准确定位目标的缺点,在室内外复杂背景下均能准确地提取完整的目标轮廓。

References

[1]  Cavallaro A,Ebrahimi T.Video object extraction based on adaptive background and statistical change detection[A].In:Proceedings of SPIE Visual Communications and Image Processing[C],San Jose,USA,2001:465~475.
[2]  Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[A].In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],Fort.Collins,USA,1999:246~252.
[3]  Elgsmmal A,Duraiswami R,Harwood D,etal.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of the IEEE,2002,90(7):1151~1163.
[4]  Chen Rui,Deng Yu,Xiang Shi-ming,etal.A non-parametric foreground/background segmentation method by fusion of intensity and edge feature[J].Journal of Computer-aided Design and Computer Graphics,2005,7(6):1278~1284.[陈睿,邓宇,向世明等.结合强度喝边界信息的非参数前景/背景分割方法[J].计算机辅助设计与图形学学报,2005,7(6):1278~1284.]
[5]  Wei Zhi-qiang,Ji Xiao-peng,Fcng Ye-wei.A moving object detection method based on self-adaptive updating of background[J].Chinese Journal of Electronics,2005,33(12):2261~2264.[魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报.2005,33(12):2261~2264.]
[6]  Yang Li,Li Yu-shan,Liu Yang,et al.Detection contours of multiple moving objects with complex background[J].Journal of Electronics,2005,27(2):306~309.[杨莉.李玉山,刘洋等.复杂背景下多运动目标轮廓检测[J].电子与信息学报.2005,27(2):306~309.]
[7]  Nagel H H.Image Sequence Server[DB/OL].http://i21www.ira.uka.de/image_sequences/.
[8]  Monnet A,Mittal A,Paragios N,et al.Background modeling and subtraction of dynamic scenes[A].In:Proceedings of the International Conference on Computer Vision[C],Nice,France,2003:1305~1312.
[9]  Tsaig Y,Averbuch A.Automatic segmentation of moving objects in video sequences:A region labeling approach[J].IEEE Transactions on Circuits and System for Video Technology,2002,12 (7):597~612.
[10]  Stauffer Chris,Grimson W Erie.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):747~758.
[11]  Wren C,Azarbayejani A,Darrell T,et al.Real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19 (7):780~785.
[12]  Valera M,Velastin S A.Intelligent distributed surveillance systems:a review[J].IEE Proceedings of Vision,Image,and Signal Processing,2005,152(2):192~204.
[13]  Zhao Ming-ying,Zhao Juu,Zhao Shu-gnang,et al.A novel method for moving object detection in intelligent video surveillance systems[A].In-International Conference on Computational Intelligence and Security[C],Guangzhou,China,2006,1797~1800.
[14]  Shen Hai-lang,ping Xi-jian,Zhou Li-li,et al.Multiple moving objects detection based on difference image[J].Journal of Image and Graphics,2003,8(特刊):702~705.[沈海浪,平西建,周利莉等.一种基于差分图象的多运动目标检测方法[J].中国图象图形学报.2003,8(spec.):702~705.]
[15]  Masayuki Yokoyama,Tomaso Paggio.A contour-based moving object detection and tracking[A].In:proceedings of IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance[C],Beijing,China,2005:271~276.
[16]  Kiratiratanapruk K,Dubey P,Siddhichai S.A gradient-based foreground detection technique for object tracking in a traffic monitoring system[A].In:IEEE Conference on Advanced Video and Signal Baaed Surveillance[C],Cumo,ltaly,2005:377~381.
[17]  Ali A T,Dagless E L.Alternative practical methods for moving object detection[A].In:Proceedings of IEEE International Conference.on Image Processing and its Application[C],Maastricht,Netherlands,1992:77~80.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133