全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于复小波系数局部方差无偏估计量的图像去噪

DOI: 10.11834/jig.20080103

Keywords: 关键词:双树复小波变换,图像去噪,小波系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要:为了更有效地去噪,在考虑了图像局部具有不独立性特点的基础上,利用双树复小波变换,提出了一种新的空间适应算法,该算法对于每个系数利用中心方形窗来估计局部方差,克服了以前的去噪方法不能有效地去除图像边缘噪声的弱点,和目前好的实验结果进行的对比结果表明,该方法有效地改善了去噪效果。

References

[1]  Zhang L,Bao Paul,Wu Xiao-lin.Hybrid inter-and intra-wavelet scale image restoration[J].Pattern Recognition,2003,36(8):1737~1746.
[2]  Mallat S.A theory for muhiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674~693.
[3]  Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81(9):425~455.
[4]  Miheak M K,Kozintsev I,Ramehandran K,et al.Low-complexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE Signal Processing Letters,1999,6(12):300~303.
[5]  Kiagsbury Nick.Complex wavelets for shift invariant analysis and filtering of signals[J].Applied and Computational Harmonic Analysis,2001,10(2):234~253.
[6]  Crouse M S,Nowak R D,Baraniuk R G.Wavelet-based signal processing using hidden Markov models[J].IEEE Transactions on Signal Processing,1998,46(4):886~902.
[7]  Shen L,Papadakis M,Kakadiaris I A,et al.Image denoising using a tight frame[J].IEEE Transactions on Image Processing,2006,15(5):1254~1263.
[8]  Donoho D L,Johnstone I M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of the American Statistical Associcty,1995,90(12):1200~1224.
[9]  Chang S Grace,Yu Bin,Vetterli Martin.Spatially adaptive wavelet thresholding with context modeling for image denoising[J].IEEE Transactions on Image Processing,2000,9(9):1522~1531.
[10]  Chang S G,Yu B,Vetterli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(9):1532~1546.
[11]  Pan Quan,Zhang Lei,Dai Guanzhong,et al.Two denoising methods by wavelet transform[J].IEEE Transactions on Signal Processing,1999,47(12):3401~3406.
[12]  Donoho D L.De-noising by soft thresholding[J].IEEE Transactions on Information Theory,1995,41(5):613~627.
[13]  Sendur L,Selesnick I W.Bivariate shrinkage with local variance estimation[J].IEEE Signal Processing Letters,2002,9(12):438~441.
[14]  Lin J,Moulin P.Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients[J].IEEE Transactions on Image Processing,2001,10(11):1647~1658.
[15]  Coifman R R,Donoho D L.Translation-invariant de-noising[A].In:Antoniadia A,Oppenheim G(Eds.),Wavelet and Statistics[C],Berlin,Germany:Springer-Vedag,1995:125~150.
[16]  Kingsbury N G.Image processing with complex wavelets[J].Philosophical Transactions of the Royal Society of London Series A,1999,357(9):2543~2560.
[17]  Li X,Orchard M T.Spatially adaptive image denosing under overcomplete expansion[A].In:Proceedings of International Conference on Image Processing[C],Vancouver,Canada,2000:300~303.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133