全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

图像分析中的矩技术

DOI: 10.11834/jig.20090805

Keywords: 矩函数,不变矩,图像分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

矩技术可广泛应用于图像检索和识别、图像分割、模板匹配、数据压缩、数字水印及运动图像序列分析等领域,近年来其研究取得了较大的进展。为了使人们对这一技术有个概略了解,首先对图像分析中的矩技术进行了较为全面的介绍和评述;然后着重探讨了离散正交矩技术在图像特征表示、图像重建、计算性能等方面的研究现状;最后提出了图像分析中的矩技术目前存在的问题和进一步的研究方向。

References

[1]  Prokop B J,Reeves A P,A survey of moment-based techniques for unoccluded object representation and recognition,Graphical Models and Image Processing,1992(5).
[2]  李宗民,矩方法及其在几何形状描述中的应用,北京:中国科学院计算技术研究所,2005.
[3]  Liu J,Zhang T,Matching and normalization of affine deformed image from regular moments,Pattern Recognition Letters,2004(4).
[4]  Ghorbel F,Image reconstruction from a complete set of similarity invariants extracted from complex moments,Pattern Recognition Letters,2006(12).
[5]  Shutler J,Nixon M S,Zernike velocity moments for sequence-based description of moving features,Image and Vision Computing,2006(4).
[6]  Mukundan R,Transform coding using discrete Tchebichef polynomials,Palma de Mallorca,Spain,2006.
[7]  Venkataramana A,Image watermarking using Krawtchouk moments,Kolkata,India,2007.
[8]  Hu M K,Visual pattern recognition by moment invariants,IRE Transactions Information Theory,1962(2).
[9]  Reddi S S,Radial and angnlar moment invariants for image identification,IEEE Transactions on Pattern Analysis and Machine Intelligence,1981(2).
[10]  Tengue M R,Image analysis via the general theory of moments,Journal of Optimal Society of American,1980(8).
[11]  Mukundan B,Ong S H,Image analysis by Tchehichef moments,IEEE Transactions on Image Processing,2001(9).
[12]  Yap P T,Image analysis by Krawtchouk moments,IEEE Transactions on Image Processing,2003(11).
[13]  Yap P T,Paramesran R,Image analysis using Hahn moments,IEEE Transactions on Pattern Analysis and Machine Intelligence,2007(11).
[14]  Zhu H Q,Shu H Z,Image analysis by discrete orthagonal dual Hahn moments,Pattern Recognition Letters,2007(13).
[15]  Zhu H Q,Shu H Z,Image analysis by discrete orthogonal Racah moments,IEEE Transactions on Signal Processing,2007(4).
[16]  Suk T,Combined blur and affine moment iovariants and their use in pattern recognition,Pattern Recognition,2003(12).
[17]  Flusser J,Degraded image analysis:an invariant approach,IEEE Transactions on Pattern Analysis and Machine Intelligence,1998(6).
[18]  刘进.张天序 图像不变矩的推广 [J].-计算机学报2004(5)
[19]  Liu J,Zhang T X,Fast algorithm for generation of moment invariants,Pattern Recognition,2004(8).
[20]  Flusser J,Suk T,Reeagnition of blurred images by the method of moments,IEEE Transactions on Image Processing,1996(3).
[21]  更多...
[22]  Liu J,Zhang T X,Recognition of the blurred image by complex moment invariants,Pattern Recognition Letters,2005(8).
[23]  Flusser J,On the independence of rotation moment invariants,Pattern Recognition,2000(9).
[24]  Flusser J,Moment invariants in image analysis,Computica,Prague,2006.
[25]  Khotanzad A,Invariant image recognition by Zeruike moments,IEEE Transactions on Pattern Analysis and Machine Intelligence,1990(5).
[26]  Bailey R R,Srinath M,Orthogonal moment features for use with parametric and non-parametric classifiers,IEEE Transactions on Pattern Analysis and Machine Intelligence,1996(4).
[27]  Sheag Y L,Shen L X,Orthogonal Fourier-Mellin moments for invariant pattern recognition,Journal of the Optical Society of America A,1994(6).
[28]  Chao Kan,Srinath M D,Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments,Pattern Recognition,2002(1).
[29]  Ping Z,Ben H,Generic orthogonal moments:Jacobi-Fourier moments for invariant image description,Pattern Recognition,2007(4).
[30]  阿木古楞.哈斯苏荣.任爱珍 不变矩图像分析研究进展 [J].-内蒙古农业大学学报(自然科学版)2005(4)
[31]  Mukundan R,Radial Tchebichef invariants for pattern recognition,Melbourne,Australia,2005.
[32]  Zhu H Q,Shu H Z,Translation and scale invariants of Tchebichef moments,Pattern Recognition,2007(9).
[33]  Teh C H,Chin R T,On image analysis by the methods of moments,IEEE Transactions on Pattern Analysis and Machine Intelligence,1988(4).
[34]  Zakaria M F,Fast algorithm for the computation of moment invariants,Pattern Recognition,1987(6).
[35]  Pan Y,A note on efficient parallel algorithms for the computation of two-dimensional image moments,Pattern Recognition,1991(9).
[36]  Kotoulas L,Andreadis I,Efficient hardware architectures for computation of image moments,Real-Time Imaging,2004(6).
[37]  Kotoulas L,Andreadis I,Real-time computation of Zernike moments,IEEE Transactions on Circuits and Systems for Video Technology,2005(6).
[38]  Li B C,Shen J,Fast computation of moment invariants,Pattern Recognition,1991(8).
[39]  Yang L,Albregtsen F,Fast and exact computation of Cartesian geometric moments using discrete Green\'s theorem,Pattern Recognition,1996(7).
[40]  Li B,The moment calculation of polyhedron,Pattern Recognition,1993(8).
[41]  Yang L,Alhregtsen F,Fast computation of three-dimensional geometric moments using a discrete divergence theorem and a generalization to higher dimensions,Graphical Models and Image Processing,1997(2).
[42]  Shu H Z,Luo L M,Fast computation of Legendre moments of polyhedra,Pattern Recognition,2001(7).
[43]  Dal M,Baylou P,An efficient algorithm for computation of shape moments from run-length codes or chain codes,Pattern Recognition,1992(10).
[44]  Wu C H,Horng S J,Run-length chain coding and scalable computation of a shape\'s moments using reconfigurable optical buses,IEEE Transactions on Systems,Man,and Cybernetics(Part B),2004(2).
[45]  Jacob M,Blu T,An exact method for computing the area moments of wavelet and spline curves,IEEE Transactions on Pattern Analysis and Machine Intelligence,2001(6).
[46]  Sheynin S,Tuzikov A,Moment computation for objects with spline curve boundary,IEEE Transactions on Pattern Analysis and Machine Intelligence,2003(10).
[47]  Shen T W,Lun D P K,Siu W C,On the efficient computation of 2D image moments using the discrete Radon transform,Pattern Recognition,1998(2).
[48]  Belkasim S O,Kamel M,Fast computation of 2-D image moments using biaxial transform,Pattern Recognition,2001(12).
[49]  Hwang S K,A novel approach to the fast computation of Zernike moments,Pattern Recognition,2006(11).
[50]  Pan H,Xia L Z,Exact and fast algorithm for two-dimensional image wavelet moments via the projection transform,Pattern Recognition,2005(3).
[51]  Mukundan R,Fast computation of Legendre arid Zernike moments,Pattern recognition,1995(9).
[52]  Gu J,Shu H Z,A novel algorithm for fast computation of Zernike moments,Pattern Recognition,2002(12).
[53]  Chong C W,Raveendran P,A comparative analysis of algorithms for fast computation of Zernike moments,Pattern Recognition,2003(3).
[54]  Yang G Y,Shu H Z,Efficient Legendre moment computation for grey level images,Pattern Recognition,2006(1).
[55]  Wang G B,Wang S G,Recursive computation of Tchebichef moment and its inverse transform,Pattern Recognition,2006(1).
[56]  章品正.王征.徐琴珍.舒华忠 二维Tchebichef矩正反变换的快速算法 [J].-信号处理2007(1)
[57]  Raj P A,Venkataramana A,Fast computation of inverse Krawtchouk moment transform using clenshaw\'s recurrence formula,San Antonio,Texas,USA,2007.
[58]  Kotoulas L G,Fast computation of Chebyshev moments,IEEE Transactions on Circuits and Systems for Video Technology,2006(7).
[59]  Papoulis A,Probability,Random Variables,and Stochastic Process,New York,USA:McGraw-Hill,1991.
[60]  Pawlak M,On the reconstruction aspects of moment descriptors,IEEE Transactions on Information Theory,1992(6).
[61]  Yin H,Analysis for the reconstruction of a noisy signal based on orthogonal moments,Applied Mathematics and Computation,2002(2-3).
[62]  Teh C H,Chin R T,On digital approximation of moment invariants,Computer Vision,Graphics,and Image Processing,1986(3).
[63]  Liao X,Pawlak M,On the accuracy of Zcrnike moments for image analysis,IEEE Transactions on Pattern Analysis and Machine Intelligence,1998(12).
[64]  Papakostas G A,Boutalis Y S,Numerical error analysis in Zernike moments computation,Image and Vision Computing,2006(9).
[65]  Singh C,Improved quality of reconstructed images using floating point arithmetic for moment calculation,Pattern Recognition,2006(11).
[66]  Xin Y,Pawlak M,Accurate computation of Zernike moments in polar coordinates,Image Processing,2007(2).
[67]  Yap P T,An efficient method for the computation of Legendre moments,IEEE Transactions on Pattern Analysis and Machine Intelligence,2005(12).
[68]  Fu B,Zhou J Z,image analysis by modified Legendre momenta,Pattern Recognition,2007(2).
[69]  Bayraktar B,Bernas T,Robinson J P,A numerical recipe for accurate image reconstruction from discrete orthogonal moments,Pattern Recognition,2007(2).
[70]  Zheng D,Liu Y,Zhao J Y,A survey of RST invariant image watermarking algorithms,Ottawa,Canadian,2006.
[71]  Liu H M,Wei R,Binary image authentication using Zernike moments,San Antonio,Texas,USA,2007.
[72]  李雷达.郭宝龙.刘雅宁 基于伪Zernike矩的抗几何攻击图像水印 [J].-光电子?激光2007(2)
[73]  Sadjadi F A,Three-dimensional moment invariants,IEEE Transactions on Pattern Analysis and Machine Intelligence,1980(2).
[74]  Lo C H,3-D moment forms:their construction and application to object identification and positioning,IEEE Transactions on Pattern Analysis and Machine Intelligence,1989(10).
[75]  Reiss T H,Features invariant to linear transformations in 2D and 3D,Hague,Netherlands,1992.
[76]  Mamistvalov G,N-Dimensional moment invariants and conceptual mathematical theory of recognition n-dimensional solids,IEEE Transactions on Pattern Analysis and Machine Intelligence,1998(8).
[77]  Flusser J,Boldys J,Moment forms invariant to rotation and blur in arbitrary number of dimensions,IEEE Transactions on Pattern Analysis and Machine Intelligence,2003(2).
[78]  Tuzikov A,Sheynin S,Computation of volume and surface body moments,Pattern Recognition,2003(11).
[79]  Xu D,Li H,3-D surface moment invariants,Hong Kong,China,2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133