Vapnik V N. The Nature of Statistical Learning Theory[M]. New York : Springer-Verlag, 1995, 85-124.
[2]
IDbeyli E D. Muhiclass support vector machines for diagnosis of erythemato-squamous diseases[J]. Expert Systems with Applications, 2008, 35(4) : 1733-1740.
[3]
Wang W J, Men C Q, Lu W Z. Online prediction model based on support vector machine [J] . Neurocomputing, 2008, 71 (4- 6 ) : 550-558.
[4]
Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3) : 293-300.
[5]
Suykens J A K, Van Gestel T, De Brabanter J, et al. Least Squares Support Vector Machines[M]. Singapore: World Scientific, 2002.
[6]
Suykens J A K, Lukas L, Dooren P V, et al. Least squares support vector machine classifiers: a large scale algorithm [A] . In:Proceedings of the European Conference on Circuit Theory and Design [C] , Stresa, Italy, 1999 : 839-842.
[7]
Chu W, Ong C J, Keerthi S S. An improved conjugate gradient scheme to the solution of least squares SVM [J]. IEEE Transactions on Neural Networks, 2005, 16(2): 498-501.
[8]
Keerthi S S, Shevade S K. SMO algorithm for least squares SVM [ A ]. In : Proceedings of the International joint Conference on Neural Networks 2003[C], Portland, OR, USA, 2003: 2088-2093.
[9]
Chua K S. Efficient computations for large least squares support vector machine classifiers [J]. Pattern Recognition Letters, 2003, 24(1-3) : 75-80.
[10]
Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing, 2002, 48(1-4): 85-105.
[11]
Gao J B, Shi D, Liu X M. Significant vector learning to construct sparse kernel regression models [ J ]. Neural Networks, 2007 (7) : 791-798.
[12]
Suykens J A K, Lukas L, Vandewalle J. Sparse approximation using least squares support vector machines[ A]. In: Proceeding of IEEE International Symposium on Circuits and System [C], Geneva, Switz, 2000 : 757-760.
[13]
Kruif B J, Vries J A. Pruning error minimization in least squares support vector machines[J]. IEEE Transactions on Neural Networks, 2003, 14(3) : 696-702.
[14]
Kuh A, Wilde P D. Comments on "pruning error minimization in least squares support vector machines" [J]. IEEE Transactions on Neural Networks, 2007, 18(2): 606-609.
[15]
Hoegaerts L, Suykens J A K, Vandewalle J, et al. A comparison of pruning algorithms for sparse least squares support vector machines [ A ] . In: Proceeding of International Conference on Neural Information Processing 2004 [C], Calcutta, India, 2004: 1247-1253.
[16]
Zeng X Y, Chen X W. SMO-based pruning methods for sparse least squares support vector machines[J]. IEEE Transactions on Neural Networks,2005, 16(6) : 1541-1546.
[17]
Jiao L C, Bo L F, Wang L. Fast sparse approximation for least squares support vector machine [J]. IEEE Transactions on Neural Networks, 2007, 15(3 ): 685-697.
[18]
Espinoza M, Suykens J A K, Moor B D. Least squares support vector machines and primal space estimation [ A ]. In: Proceeding of the 42nd IEEE Conference on Decision and Control [C], Maui, HI, USA, 2003: 3451-3456.
Gan L Z, Liu H K, Sun Y X. Sparse least squares support vector machine for function estimation [ A ] . In: Proceedings of the 3rd International Symposium on Neural Networks[C], Chengdu, China, 2006 : 1016-1021.
[21]
更多...
[22]
张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
[23]
Murphu P M, Aha D W. UCI Repository of Machine Learning Database [EB/OL]. 2007, available from : http ://www. ics. uci. edu/- mlearn/MLRepository. html.
[24]
Zhao Y, Keong K C. Fast leave-one-out evaluation and improvement on inference for LS-SVMs [ A ] . In: Proceedings of the 17th International Conference on Pattern Recognition [C], Cambridge, UK, 2004: 494-497.
[25]
An S J, Liu W Q, Venkatesh S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression[J]. Pattern Recognition, 2007, 40(8) : 2154-2162.